Code No.

V - 2385

Common Entrance Examination for Admission to Four Year Under Graduate Programmes in the Teaching Departments of the University of Kerala, 2025

CSS

MATHEMATICS

For office use only

General Instructions

- 1. The Question Paper is having 40 Objective Questions, each carrying Four marks.
- 2. The answers are to be (✓) 'tick marked' only in the "Response Sheet" provided.
- 3. Negative marking: 1 mark will be deducted for each wrong answer.

Time: 1 Hour Max. Marks: 160

To be fille	To be filled in by the Candidate												
Register	in Figures												
Number	in words												

For office use only

Choose appropriate answer from the options in the questions.

 $(40 \times 4 = 160 \text{ marks})$

- 1. If a continuous function f(x) does not have a root in the interval [a, b], then which one of the following statements is TRUE?
 - A. $f(a) \cdot f(b) = 0$

B.
$$f(a) \cdot f(b) \ge 0$$

C. $f(a) \cdot f(b) > 0$

D. $f(a) \cdot f(b) < 0$

DONOTWRITEHERE

2. Which one among the following is a cube root of unity?

A.
$$\frac{1+i\sqrt{3}}{2}$$

B.
$$1-i\sqrt{3}$$

$$C. \quad \frac{-1+i\sqrt{3}}{2}$$

D.
$$-1+i\frac{\sqrt{3}}{2}$$

- 3. What is the radius of the circle $x^2 + y^2 + 4x 6y 3 = 0$?
 - A. 4

B. 3

C. 6

D. 13

- 4. In a class of 40 students, 22 are good in Mathematics, 26 are good in Physics and 14 are good in both. How many students are weak in either of these subjects?
 - A. 7

B. 8

C. 6

D. 10

- 5. Consider $f(x) = \frac{\sqrt{2+x} \sqrt{2}}{x}$. What will be $\lim_{x \to 0} f(x)$?
 - A. $\frac{1}{2}$
 - B. $\sqrt{2}$
 - C. $\frac{1}{\sqrt{2}}$
 - D. $\frac{1}{2\sqrt{2}}$
- 6. Find the distance between the points P(1, -4) and P(4, -8) on the two dimensional plane.
 - A. $2\sqrt{5}$

B. 5

C. $\sqrt{5}$

D. $5\sqrt{5}$

7. What is the rate of change in area of a circle with respect to the diameter when the radius is 5m?

A.
$$-5\pi m^2/m$$

B.
$$10\pi m^2 / m$$

C.
$$-10\pi m^2 / m$$

D.
$$5\pi m^2 / m$$

- 8. What is the slope of the tangent to the circle $x^2 + y^2 = 25$ at the point P(3, -4)?
 - A. $\frac{3}{4}$
 - B. $-\frac{3}{4}$
 - C. $\frac{4}{3}$
 - D. $-\frac{4}{3}$
- 9. If $\tan^2 \alpha 6 \tan \alpha + 9$, $0 < A < 90^\circ$, what is the value of $6 \cot \alpha + 8\sqrt{10} \cos \alpha$?
 - A. $7\sqrt{10}$

B. $9\sqrt{10}$

C. $11\sqrt{10}$

- D. 10
- 10. If $\sec^2 \alpha + \tan^2 \alpha = \frac{5}{3}$, then what is the value of $\tan 2\alpha$?
 - A. $4\sqrt{3}$

B. $\frac{3}{\sqrt{3}}$

C. $\frac{1}{\sqrt{3}}$

- D. $5\sqrt{3}$
- 11. Which one among the following curves has slope of its tangent at the point (x, y) is $3x^2$ and passes through the point P(1, -1)?
 - A. $x^3 + 2$

B. $x^3 - 4$

C. $x^3 - 2$

D. $x^3 + 4$

- 12. What is the value of the definite integral $\int_{-1}^{1} 3x^2 \sqrt{x^3 + 1} \ dx$?
 - A. $\frac{2\sqrt{2}}{3}$
 - B. $\frac{3\sqrt{2}}{4}$
 - $C. \quad \frac{4\sqrt{2}}{3}$
 - $D. \quad \frac{8\sqrt{2}}{3}$
- 13. What is the area of the region enclosed by the parabola $y = 2 x^2$ and the line y = -x?
 - A. $\frac{7}{2}$
 - B. $\frac{9}{2}$
 - C. $\frac{11}{2}$
 - D. $\frac{13}{3}$
- 14. How many two digit numbers can be formed using the digits 6,7 and 8 if the repetition of digits are allowed?
 - A. 9

B. 12

C. 24

- D. 6
- 15. How many committees of 5 students can be selected from a class of 25?
 - A. 52120

B. 53130

C. 51230

D. 53410

16. How many 7 – digit telephone numbers can be formed if the first digit cannot be 0 or 1?

A.
$$8 \times 8 \times 10 \times 10 \times 10 \times 10 \times 10$$

B.
$$8 \times 9 \times 10 \times 10 \times 10 \times 10 \times 10$$

C.
$$10 \times 9 \times 10 \times 10 \times 10 \times 10 \times 10$$

D.
$$8 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10$$

17. Which of the following is the general solution of the differential equation $(x^2 + 1)\frac{dy}{dx} = y?$

A.
$$y = \frac{2x^3}{6} + 3x + c$$

B.
$$ce^{\tan^{-1}x}$$

C.
$$e^{\tan^{-1}x} + c$$

D.
$$ce^{x^2+1}$$

18. What is the integrating factor for the differential equation $\frac{dy}{dx} + 2y = x$?

A.
$$e^{-3x}$$

B.
$$e^{-x^2}$$

C.
$$e^{2x}$$

D.
$$e^{-2x}$$

19. Choose the correct value of $\int x^2 e^x dx$.

A.
$$x^2e^x + 2e^x + C$$

B.
$$x^2e^x - 2xe^x + C$$

C.
$$(x^2 - 2x + 2)e^x + C$$

D.
$$(x^2 + 2x - 2)e^x + C$$

- 20. What is the sum of the infinite series $\frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \dots$?
 - A. $\frac{1}{11}$
 - B. $\frac{1}{6}$
 - C. $\frac{1}{17}$
 - D. $\frac{1}{91}$
- 21. $3x^2 6xy + 3y^2 + 2x 7 = 0$ represents
 - A. an ellipse

B. a circle

C. a parabola

- D. a hyperbola
- 22. What is the angle between the vectors $\hat{i} 2\hat{j} 2\hat{k}$ and $6\hat{i} + 3\hat{j} + 2\hat{k}$?
 - A. $\cos^{-1}\left(\frac{4}{21}\right)$
 - B. $\cos^{-1}\left(\frac{4}{23}\right)$
 - $C. \quad \cos^{-1}\!\!\left(-\frac{4}{21}\right)$
 - D. $\cos^{-1}\left(-\frac{4}{23}\right)$
- 23. What is the value of the definite integral $\int_0^{\pi} \tan x \, dx$?
 - A. 1

B. 0

C. $\sqrt{3}$

D. $\sqrt{2}$

- 24. What is the area of the triangle with vertices P(1, -1, 0), Q(2, 1, -1) and R(-1, 1, 2)?
 - A. $6\sqrt{2}$

B. $4\sqrt{2}$

C. $6\sqrt{3}$

- D. $3\sqrt{2}$
- 25. What is the value of the definite integral $\int_0^{\pi} \log_e(x) dx$?
 - A. $-\pi + \pi \log(\pi)$
 - B. $\pi \pi \log(\pi)$
 - C. $-2\pi \pi \log(\pi)$
 - D. $2\pi + \pi \log(\pi)$
- 26. What is the area of the region enclosed by the parabola $y = x^2$ and the line y = x + 2.
 - A. $\frac{7}{2}$
 - B. $\frac{9}{2}$
 - C. $\frac{11}{2}$
 - D. $\frac{11}{3}$
- 27. What is the determinant of the matrix $A = \begin{bmatrix} 2 & 1 & 3 \\ 3 & -1 & -2 \\ 2 & 3 & 1 \end{bmatrix}$?
 - A. 35

B. 36

C. 37

D. 38

28. Choose the solution of the system of equations 3x + y + z = 2, 6x + y + 2z = 1, 2x + 8y + 9z = -3.

A.
$$x = \frac{18}{25}$$
, $y = 33$, $z = \frac{19}{25}$

B.
$$x = \frac{18}{25}$$
, $y = 3$, $z = \frac{-79}{25}$

C.
$$x = \frac{81}{25}$$
, $y = 13$, $z = \frac{-19}{25}$

D.
$$x = \frac{81}{25}$$
, $y = 3$, $z = \frac{19}{25}$

29. Which of following is the characteristic polynomial for the given matrix

$$A = \begin{pmatrix} 1 & 2 & -6 \\ 8 & 6 & -7 \\ 3 & -2 & 4 \end{pmatrix}$$
?

A.
$$x^3 + 11x^2 - 22x + 108$$

B.
$$x^3 - 11x^2 + 22x - 108$$

C.
$$2x^3 - 11x^2 - 22x + 108$$

D.
$$-2x^3 + 11x^2 - 22x - 108$$

30. What are the characteristic values of the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 3 & 0 \\ -6 & 3 & 2 \end{bmatrix}$?

A.
$$-2, 2, 3$$

D.
$$4.-2, 6$$

- 31. In how many ways can you choose a president, secretary and treasurer for a club from 12 candidates, if each one eligible for each position and no candidate can hold two positions?
 - A. 1230

B. 1023

C. 2024

- D. 1320
- 32. What is the limit of sequence of partial sums of the series $\sum_{n=0}^{\infty} 3^{2+n} 2^{1-3n}$?
 - A. $\frac{124}{55}$
 - B. $\frac{142}{5}$
 - C. $\frac{144}{5}$
 - D. $\frac{242}{55}$
- 33. What is the area of the region between the x axis and the graph of $f(x) = x^3 x^2 2x$, $-1 \le x \le 2$?
 - A. $\frac{13}{72}$

B. $\frac{73}{21}$

C. $\frac{37}{12}$

- D. $\frac{17}{12}$
- 34. What is the derivative of x^x , x > 0?
 - A. $x \times x^{\log x 1}$
 - B. $x^x (\log x^x)$
 - $C. \quad x^{x} (1 + \log x)$
 - $D. \quad x^{x} \Big(1 + \log x^{x} \Big)$

35. Which of the following is the graph of the line y = 4x + 5 in the interval [-4,4]?

- 36. A basket contains 30 blue balls and 70 pink balls. What is the probability of getting exactly 10 blue balls in a sample of size 20 if the sampling is done with replacement?
 - A. 0.0418

B. 0.0308

C. 0.0234

- D. 0.2234
- 37. Identify the correct graph of the circle $x^2 + y^2 x 3y 1 = 0$

- 38. What is the slope of the line 8x + 5y = 20?
 - A. $\frac{20}{8}$

B. $-\frac{8}{5}$

C. $\frac{5}{8}$

- D. $-\frac{1}{5}$
- 39. Which of the following is the graph of the function $f(x) = (x-2)^2 + 4$ in the interval [0, 2]?

- 40. Choose the correct complex number that is equal to the quotient $\frac{4+2i}{1-i}$.
 - A. 1+3i
 - B. 3+i
 - C. 4-3*i*
 - D. 2 + 3i

RESPONSE SHEET

1	Α	В	С	D	E	11	Α	В	С	D	Ε	21	Α	В	С	D	Е	31	Α	В	С	D	Е
2	Α	В	С	D	E	12	Α	В	С	D	Ε	22	Α	В	С	D	Е	32	Α	В	С	D	Е
3	Α	В	С	D	E	13	Α	В	С	D	Ε	23	Α	В	С	D	Ε	33	Α	В	С	D	Ε
4	Α	В	С	D	Е	14	Α	В	С	D	Е	24	Α	В	С	D	Е	34	Α	В	С	D	E
5	Α	В	С	D	E	15	Α	В	С	D	Е	25	Α	В	С	D	E	35	Α	В	С	D	E
6	Α	В	С	D	Е	16	Α	В	С	D	Е	26	Α	В	С	D	Е	36	Α	В	С	D	E
7	Α	В	С	D	Е	17	Α	В	С	D	Е	27	Α	В	С	D	Е	37	Α	В	С	D	Е
8	Α	В	С	D	Е	18	Α	В	С	D	Е	28	Α	В	С	D	Е	38	Α	В	С	D	E
9	Α	В	С	D	Е	19	Α	В	С	D	Е	29	Α	В	С	D	Е	39	Α	В	С	D	E
10	Α	В	С	D	E	20	Α	В	С	D	E	30	Α	В	С	D	Е	40	Α	В	С	D	Е

ROUGH WORK

ROUGH WORK

ROUGH WORK