Code No. | V - 2339

Entrance Examination for Admission to the P.G. Courses in the Teaching Departments, 2025

CSS

GENETICS AND PLANT BREEDING

For office use only

General Instructions

- 1. The Question Paper is having 100 Objective Questions, each carrying one mark.
- 2. The answers are to be (\checkmark) 'tick marked' **only** in the "**Response Sheet**" provided.
- 3. Negative marking: 0.25 marks will be deducted for each wrong answer.

Time: 2 Hours Max. Marks: 100

To be filled in by the Candidate								
Register	in Figures							
Number	in words							

For office use only

Choose appropriate answer from the options in the questions.

 $(100 \times 1 = 100 \text{ marks})$

- 1. Subviral particles that infect plant cells with the help of a virus are
 - A. Prions
 - B. Virusoids
 - C. Virions
 - D. Prions

2. The microtubule arrangement in the flagellum of a eukaryotic cell

A.
$$9 + 2$$

3. Which among the following represents a micellar model of plasma membrane

- A. Unit membrane model
- B. Danielli-Davson model
- C. Fluid Mosaic model
- D. All of these

4. Which is not a component of 60s subunit of eukaryotic ribosome

A. 28s r RNA

B. 5sr RNA

C. 5.8sr RNA

D. 18sr RNA

2 V - 2339

5.	Which among the following acts as the principal photosynthetyic pigment							
	A.	Bacterioviridin	B.	Carotene				
	C.	Xanthophyll	D.	Chlorophyll-c				
6.	Spir	ndle attachment is possible through	out t	he entire chromosome in				
	A.	Metacentric chromosomes	B.	Submetacentric chromosomes				
	C.	Holocentric chromosomes	D.	Telocentric chromosomes				
7.	Spo	t the non-histone protein						
	A.	DNA Polymerase	B.	RNA polymerase				
	C.	Acetyl transferase	D.	All of these				
8.	•	ploidy in which one chromosome is fferent strain is best represented by		aced by an alien chromosome from				
	A.	n–1+1	B.	n±1				
	C.	n–1–1	D.	n+1–1				
9.	The	diameter of the double helix in Z-D)NA i	s				
	A.	20 A°	B.	18 A°				
	C.	22 A°	D.	21 A°				
10.	Hyd	lrogen bonds are broken during DN	IA re _l	olication by the enzyme				
	A.	DNA Gyrase	B.	Topoisomerases				
	C.	DNA Helicase	D.	None of these				
11.	A tri	iplet codon representing methionin	e is					
	A.	AUG	B.	UAA				
	C.	UAG	D.	GUA				
12.	The	concept of central dogma in molec	cular	biology was given by				
	A.	Jacob and Monod	B.	Francis Crick				
	C.	Watson and Crick	D.	Marshall and Nirenberg				

13.	13. An example of a single-stranded DNA virus				
	A.	φx 174	B.	MS_2	
	C.	SV40	D.	TMV	
14	Han	oloid plants can be raised by			
	Α.		В.	Pollen Culture	
	C.	Ovule culture	D.	All of these	
15.	Artif	ficial seeds are produced by using	the e	encapsulating agent	
	A.	Sodium alginate			
	B.	MS Medium			
	C.	Sodium dodecyl sulphate			
	D.	Sodium thiosulphate			
16.	Firs	t step in cryopreservation of plant t	tissue	es	
	A.	Vitrification	В.	Freezing	
	C.	Thawing	D.	Storage in liquid nitrogen	
17.	Syn	thetic DNA was first perfected by			
	A.	Nirenberg	B.	Har Govind Ghorana	
	C.	Kary Mullis	D.	Francis Crick	
18.	An e	example of a virus vector			
	A.	SV 40	B.	CaMV	
	C.	HSV	D.	All of these	
19.					
	A nu	ucleotide sequence database			
		ucleotide sequence database DDBJ	В.	SWISSPROT	
	A no A. C.	DDBJ PDB	B. D.	SWISSPROT None of these	

20.	A Riccia species endemic to India							
	A.	Riccia gangetica	B.	Riccia frostii				
	C.	Riccia ciliata	D.	Riccia reticulata				
21.	Whi	ch among the following is a metho	d of v	egetative reproduction in Funaria				
	A.	Fragmentation	B.	Gemmae				
	C.	Bulbils	D.	All of these				
22.	A ho	omosporous ferm						
	A.	Selaginella	B.	Pteris				
	C.	Marsilea	D.	Salvinia				
23.	Apo	sporous gametophytes in pteridop	hytes	s are				
	A.	Haploid	B.	Diploid				
	C.	Triploid	D.	Tetraploid				
24.	Whi	ch is not a fossil gymnosperm						
	A.	Rhynia	B.	Zamia				
	C.	Williamsonia	D.	Palmoxylon				
25.	A m	odel organism						
	A.	Rhizopus	B.	Riccia				
	C.	Rhynia	D.	Neurospora				
26.	Cro	ssing of F1 back to its recessive pa	arent	is				
	A.	Test Cross	B.	Dihybrid cross				
	C.	Monohybrid cross	D.	Distant hybridization				
27.	The	Reason for Sickle cell anaemia						
	A.	Substitution	B.	Deletion				
	C.	Duplication	D.	Translocation				

28.								
	A.	Epistasis						
	B.	Supplementary gene interaction						
	C.	Pleiotrosm						
	D.	Multiple allelism						
29.	Ger	notype and phenotype frequency remain the same in						
	A.	Incomplete dominance	B.	Co-dominance				
	C.	Overdominance	D.	Both A and B				
30. A colourblind man marries a normal woman. What will be the percer offspring with colourblindness among the males in the FI				·				
	A.	All males will be normal						
	B.	All males will be colourblind						
	C.	50% males will be colourblind						
	D.	25% males will be colourblind						
31.		A rose comb (Rrpp) chicken was mated with walnut comb(RrPp) chicken. Determine the phenotype ratio of F1						
	A.	3 Walnut: 3 Rose: 1 Pea: 1 Single	е					
	B.	3 Walnut: 1 Rose: 3 Pea:1 Single						
	C.	1 Walnut: 1 Rose: 3 Pea: 3 Single)					
	D.	2 Walnut: 2 Rose: 3 Pea: 1 Single)					
32.	An e	example of incomplete penetrance						
	A.	Phenyl ketonuria	B.	Alkaptonuria				
	C.	Polydactyly	D.	Pattern baldness				

33. The first proof that DNA is the genetic material was published by								
	A.	Hershey and Chase	B.	Avery, MacLeod and McCarty				
	C.	Griffith	D.	Lederberg and Tatum				
34.	The	type of sex determination mechar	ism i	n Protenor is				
	A.	XX-XY	B.	XX-XO				
	C.	ZZ-ZW	D.	None of these				
35.	Klin	efelter's syndrome is best represer	nted I	ру				
	A.	44+XO	B.	44XYY				
	C.	44+XXYY	D.	44+XXY				
36.	Plas	stid inheritance in <i>Mirabilis</i> was firs	t repo	orted by				
	A.	Bridges	B.	Morgan				
	C.	Correns	D.	Punnet				
37.		thenium, an invasive plant causing import of	j polle	en allergy, came to India along with				
	A.	Rice	B.	Carrot				
	C.	Wheat	D.	Maize				
38.	During double fertilization, the pollen tube deposits male gametes into the							
	A.	Egg Cell	B.	Central Cell				
	C.	Antipodals	D.	Synergids				
39.	Whi	Which of the following is not an ethical concern in research						
	A.	Plagiarism	B.	Informed Consent				
	C.	Fabrication of data	D.	Use of complex terminologies				
40.	Citr	ate is converted to isocitrate in TC/	4 Сус	cle by the enzyme				
	A.	Isocitrate dehydrogenase	B.	Aconitase				
	C.	Transketolase	D.	Fumarase				

41.	An anticodon is found in								
	A.	DNA	B.	mRNA					
	C.	rRNA	D.	tRNA					
42.	In v	itro amplification of DNA is achieve	ed thr	ough					
	A.	Electrophoresis	B.	Southern blot					
	C.	Western blot	D.	PCR					
43.	An e	example of a nitrogen fixing cyanol	oacte	rium					
	A.	Nostoc	B.	Anabaena					
	C.	Oscillatoria	D.	Both A and B					
44.	A striking character of Archeae when compared to eubacteria								
	A.	Ether-linked membrane lipids							
	B.	Cell walls							
	C.	RNA as genetic material							
	D.	80S ribosome							
45.	NAD+ and NADP+ are formed from								
	A.	Vitamin B1	B.	Vitamin B2					
	C.	Vitamin B3	D.	Vitamin B6					
46.	The most common fungal partner in lichen is								
	A.	Zygomycetes	B.	Ascomycetes					
	C.	Basidiomycetes	D.	Deuteromycetes					
47.	Which among the following is a bacterial disease								
	A.	Rust of Wheat	B.	Blight of Paddy					
	C.	Crown gall	D.	Powdery mildew					
48.	A liv	ving fossil							
	A.	Ginkgo	B.	Cycas					
	C	Pinus	D	Gnetum					

	A.	Phytophthora infestans		
	B.	Alternaria solani		
	C.	Pseudomonas syringae		
	D.	Xanthomonas campestris		
50	In a	scientific experiment, the variable	that i	s deliherately changed is
00.	A.	Dependent variable	B.	Control variable
	Д. С.	·	D.	
	C.	Independent variable	D.	Observational variable
51.	The	type of placentation in tomato is		
	A.	Axile	B.	Parietal
	C.	Free central	D.	Marginal
			-	
52.	Diac	lelphous stamens and zygomorphi	c flov	vers are characteristic of
	A.	Malvaceae	B.	Fabaceae
	C.	Solanaceae	D.	Asteracaeae
53.	Quir	nine is obtained from		
	A.	Papaver somniferum	B.	Atropa belladonna
	C.	Cinchona officinalis	D.	Digitalis purpurea
54.	Mor	phology of the useful part of Apple	is	
	Α.	Placenta	B.	Swollen thalamus
	C.	Ovary	D.	Calyx
		·		·
55.	The	term 'Biodiversity Hotspot' was int	roduc	ed by
	A.	Norman Myers	B.	Rachel Carson
	C.	Charles Darwin	D.	Carl Linnaeus

49. The 'Irish Potato Famine' was due to

56.	Wallace's line is associated with								
	A. Zoogeography and phytogeography								
	B.	Glaciology							
	C.	Oceanography							
	D.	Ethnobotany							
57.	The	The largest terrestrial biome in the world							
	A.	Tundra	B.	Taiga					
	C.	Tropical rain forest	D.	Grassland					
58.	An extinct fossil record of a seed fern								
	A.	Rhynia	B.	Glossopteris					
	C.	Selaginella	D.	Marchantia					
59.	The ozone layer is situated in								
	A.	Troposphere	B.	Startosphere					
	C.	Mesosphere	D.	Themosphere					
60.	The primary acceptor of electrons in Calvin cycle is								
	A.	ATP	B.	NADPH					
	C.	RuBP	D.	PEP					
61.	A protein visualization tool								
	A.	BLAST	B.	PDB					
	C.	RasMol	D.	PHYLIP					
62.	The	programming language widely use	ed in	bioinformatics					
	A.	PYTHON	B.	JAVA					
	C.	C++	D.	PASCAL					

63.	Green revolution in India mainly focused on the improvement of							
	A.	Maize	B.	Fruits and vegetables				
	C.	Wheat and Rice	D.	Ornamentals				
64.	Pho	Photorespiration is favoured in the presence of						
	A.	High CO ₂ and low O ₂						
	B.	High light and temperature						
	C.	Increased water availability						
	D.	None of these						
65.	The initial CO ₂ fixation in C ₄ plants occur in							
	A.	Bundle sheath cells	B.	Mesophyll cells				
	C.	Epidermal cells	D.	Guard cells				
66.	The genotype of the mother dictates phenotype of the offsprings in							
	A.	Cytoplasmic inheritance						
	B.	Sex linked inheritance						
	C.	Quantitative inheritance						
	D.	Multiple						
67.	The	term 'crude drug' refers to						
	A.	Unprocessed plant material						
	B.	Processed plant material						
	C.	Chemically synthesised drug						
	D.	None of these						
68.	The	F ₂ Phenotype ratio in dominant ep	oistas	is is				
	A.	9:3:4	B.	12:3:1				
	C.	9:7	D.	9:6:1				

69.	9. The condition of stamens in Cucurbita is				
	A.	Syngenicious	B.	Synandrous	
	C.	Diadelphous	D.	Gynandrous	
70	٨ ٥٢	accial type of inflarescence			
70.	A S	pecial type of inflorescence			
	A.	Spike	B.	Catkin	
	C.	Hypanthodium	D.	Verticillaster	
71.	The	commonest type of endosperm in	plant	ts.	
	A.	Helobial	B.	Cellular	
	C.	Nuclear	D.	Ruminate	
72.	Plar	nt hormone associated with fruit rip	ening)	
	A.	Ethylene	B.	Abscisic acid	
	C.	Gibberellin	D.	All of these	
73.	An e	example of aggregate fruit			
	A.	Annona	B.	Morus	
	C.	Jackfruit	D.	Pineapple	
74.	Enti	ry of pollen tube into the embryosa	ac thr	ough the integuments is referred to	
	A.	Porogamy	B.	Chalazogamy	
	C.	Mesogamy	D.	Herkogamy	
75.	Ano	malous secondary thickening occu	ırs in		
	A.	Boerhaavia	B.	Bougainvillea	
	C.	Bignonia	D.	All of these	

76.	Maj	or part of wood is made of		
	A.	Lignin	B.	Cellulose
	C.	Hemicellulose	D.	Resins and oils
77.	A va	ascular bundle with xylem surround	ded b	y phloem is
	A.	Amphicribral	B.	Amphivasal
	C.	Radial	D.	Bicollateral
78.	The	roughness of grass leaves is due	to	
	A.	Silica deposits	B.	Calcium carbonate
	C.	Calcium oxalate	D.	All of these
79.	A ty		mpler	mentary companion in the adjacent
	A.	Bordered pit	B.	Blind pit
	C.	Half bordered	D.	Simple pit
80.	The	e central pith like parenchymatous :	zone	of Funaria capsule is
	A.	Theca	B.	Columella
	C.	Spore Sac	D.	Apophysis
81.	The	e sporangial development is Euspo	rangi	ate in
	A.	Psilotum		
	В.	Lycopodium		
	C.	Equisetum		
	D.	All of these		

82.	A sir	A similarity of pteridophyte with bryophytes						
	A.	Heterospory						
	B.	Water is essential for fertilization						
	C.	Sporophytie plant body						
	D.	Well developed vascular bundles						
83.	. Which of the following comes under the category of protostele							
	A.	Haplostele	B.	Actinostele				
	C.	Plectostele	D.	All of these				
84.	4. The nature of endosperm in gymnosperms							
	A.	Triploid	B.	Diploid				
	C.	Haploid	D.	Polyploid				
85.	85. The Institute of Paleobotany was established by			d by				
	A.	Birbal Sahni	B.	M.S. Swaminathan				
	C.	MOP lyengar	D.	E.K. Janaki Ammal				
86.	Enzymes that catalyse the same type of reactions			ctions				
	A.	Isoenzyme	B.	Allosteric enzyme				
	C.	Antienzyme	D.	None of these				
87.	An example of a reducing sugar found in plants			ants				
	A.	Glucose	B.	Sucrose				
	C.	Maltose	D.	Cellulose				
88.	. The bacterial cell wall is made of							
	A.	Cellulose	B.	Murein				
	C.	Chitin	D.	Pectocellulose				

89.		Which of the following blood groups will not appear among the offspring of parents with A and AB blood groups					
	A.	A	B.	В			
	C.	AB	D.	0			
90.	The	concept of falsifiability in science	was i	ntroduced by			
	A.	Aristotle	B.	Karl Popper			
	C.	Francis Bacon	D.	René Descartes			
91.	The rate of photosynthesis is not affected by						
	A.	Oxygen concentration					
	B.	Light intensity					
	C.	Temperature					
	D.	Water availability					
92.	The	substrate for photorespiration					
	A.	Glycolate	B.	Phosphoglycerate			
	C.	Phosphoglyceraldehyde	D.	Pyruvic acid			
93.	CAN	M pathway occurs in					
	A.	All angiosperms	B.	Mesophytes			
	C.	Succulents	D.	All of these			
94.	The number of ATP and NADPH molecules required for the synthesis of a molecule of glucose respectively is						
	A.	18 and 12	B.	12 and 18			
	C.	8 and 12	D.	12 and 8			

95.	5. Plant hormone associated with seed dormancy					
	A.	Giberellin	B.	Cytokinin		
	C.	Ethylene	D.	Abscissic acid		
00	0					
96.	Gen	e expression can be inhibited by				
	A.	RNA polymerase	B.	Si RNA		
	C.	Translational regulator	D.	Translational proteins		
97.	Prot	otein coding genes are transcribed by				
	A.	RNA Polymerase I	B.	RNA Polymerase II		
	C.	DNA Polymerase I	D.	DNA Polymerase II		
98.	The first plant genome to be sequenced is					
	A.	Arabidopsis thaliana	B.	Zea mays		
	C.	Oryza sativa	D.	Solanum lycopersicon		
99.	The formation of 1000 functional egg cells require					
	A.	250 meiotic divisions	B.	1000 meiotic divisions		
	C.	500 meiotic divisions	D.	200 meiotic divisions		
100. Cystic fibrosis is						
	A. an autosomal dominant disorder					
	B.	an autosomal recessive disorder				
	C.	. A sex linked dominant disorder				
	D. A sex linked recessive disorder					

RESPONSE SHEET

1 A B C D E	26 A B C D E	51 A B C D E	76 A B C D E
2 A B C D E	27 A B C D E	52 A B C D E	77 A B C D E
3 A B C D E	28 A B C D E	53 A B C D E	78 A B C D E
4 A B C D E	29 A B C D E	54 A B C D E	79 A B C D E
5 A B C D E	30 A B C D E	55 A B C D E	80 A B C D E
6 A B C D E	31 A B C D E	56 A B C D E	81 A B C D E
7 A B C D E	32 A B C D E	57 A B C D E	82 A B C D E
8 A B C D E	33 A B C D E	58 A B C D E	83 A B C D E
9 A B C D E	34 A B C D E	59 A B C D E	84 A B C D E
10 A B C D E	35 A B C D E	60 A B C D E	85 A B C D E
11 A B C D E	36 A B C D E	61 A B C D E	86 A B C D E
12 A B C D E	37 A B C D E	62 A B C D E	87 A B C D E
13 A B C D E	38 A B C D E	63 A B C D E	88 A B C D E
14 A B C D E	39 A B C D E	64 A B C D E	89 A B C D E
15 A B C D E	40 A B C D E	65 A B C D E	90 A B C D E
16 A B C D E	41 A B C D E	66 A B C D E	91 A B C D E
17 A B C D E	42 A B C D E	67 A B C D E	92 A B C D E
18 A B C D E	43 A B C D E	68 A B C D E	93 A B C D E
19 A B C D E	44 A B C D E	69 A B C D E	94 A B C D E
20 A B C D E	45 A B C D E	70 A B C D E	95 A B C D E
21 A B C D E	46 A B C D E	71 A B C D E	96 A B C D E
22 A B C D E	47 A B C D E	72 A B C D E	97 A B C D E
23 A B C D E	48 A B C D E	73 A B C D E	98 A B C D E
24 A B C D E	49 A B C D E	74 A B C D E	99 A B C D E
25 A B C D E	50 A B C D E	75 A B C D E	100 A B C D E

ROUGH WORK

ROUGH WORK

ROUGH WORK