Code No.

V - 2341

Entrance Examination for Admission to the P.G. Courses in the Teaching Departments, 2025

CSS

CHEMISTRY/CHEMISTRY WITH SPECIALIZATION IN RENEWABLE ENERGY/CHEMISTRY WITH SPECIALIZATION IN FUNCTIONAL MATERIALS

For	office	use	only
-----	--------	-----	------

General Instructions

- 1. The Question Paper is having 100 Objective Questions, each carrying one mark.
- 2. The answers are to be (✓) 'tick marked' **only** in the "**Response Sheet**" provided.
- 3. Negative marking: 0.25 marks will be deducted for each wrong answer.

Time: 2 Hours Max. Marks: 100

To be fille	ed in by the Car	ndidate				
	in Figures					
Number	in words					

For office use only

Choose appropriate answer from the options in the questions.

 $(100 \times 1 = 100 \text{ marks})$

- 1. When one litre of water is cooled from 4°C to 0°C, its volume ————
 - A. increases
 - B. decreases
 - C. remains the same
 - D. first decrease and then increases

DONOTWRITEHERE

2.	Veri	million is ———.				
	A.	mercury acetate	B.	mercury sulfide		
	C.	mercury nitrate	D.	mercury chloride		
3.	joins the two halves of an electrochemical cell.					
	A.	Calomel electrode	B.	Reference electrode		
	C.	Salt bridge	D.	Hydrogen electrode		
4.		n electrochemical cell, the electroded ————.	de at	which the reduction takes place is		
	A.	over voltage	B.	anode		
	C.	electrolyte	D.	cathode		

5.	An increase in the conductivity equivalent of a solid electrolyte with dilution is primarily due to ————.							
	A.	100 percent electrolyte ionisation with natural dilution						
	B.	an increase in both ion numbers and ionic mobility						
	C.	increased ionic mobility of ions						
	D.	a rise in ion counts						
6.		When three of the phases of a two component system are simultaneously in equilibrium, the number of degrees of freedom is ————.						
	A.	zero	B.	one				
	C.	two	D.	three				
7.	The temperature of an object increases slowly, then the energy of that object							
	A.	increases slowly	B.	decreases quickly				
	C.	increases quickly	D.	decreases slowly				
8.	The ————— law of thermodynamics states that no process is possible whose sole result is the transfer of heat from a colder to a hotter object.							
	A.	Zeroth	B.	First				
	C.	Second	D.	Third				
9.	Frenkel defect is shown by ———.							
	A.	sodium chloride	B.	silver nitrate				
	C.	silver bromide	D.	diamond				
10.	Wh	at does the " $ heta$ " represents in Brag	g's L	aw?				
	A.	The angle of incidence of X-rays						
	B.	The angle of reflection of X-rays						
	C.	The angle of diffraction of X-rays						
	D.	The angle of refraction of X-rays						

11.	A re	A reaction's rate constant is determined by ———.						
	A.	A. extent of the reaction						
	B.	B. temperature of the reaction						
	C.	initial concentration of the reacta	nts					
	D.	the time of completion of reaction	1					
12.	For	For a given rate, the unit of rate and the rate constant are the same for reaction.						
	A.	zero order	B.	first order				
	C.	second order	D.	third order				
13.		———— act as a is a poison cat	alyst	(inhibitor) for a reaction.				
	A.	Potassium nitrate	B.	Aluminum nitrate				
	C.	Aluminum oxide	D.	Chlorine				
14.		———— Law specifically govern	s the	relative lowering of vapour pressure				
		olutions.						
	A.	Vant Hoff's	B.	Raoult's				
	C.	Boyle's	D.	Charles's				
15.	Bro	nze is an alloy consisting of ———		 .				
	A.	Copper and Tin	B.	Copper and Zinc				
	C.	Copper and Nickel	D.	Copper and Aluminum				
16.	Because of adsorption surface energy ———.							
	A.	decreases						
	B.	increases						
	C.	becomes zero						
	D.	increases first and then decrease	es					
17.	Wh	at is the substance that is adsorbe	d cal	led?				
	A.	Absorsent	B.	Adsorbate				
	C.	Adsorbent	D.	Absorbite				

What is the unit of Specific Heat Capacity?						
A.	Joule / (grams. K)	B.	Joule / kg			
C.	Joule / (mole. K)	D.	Joule / K			
Visi	on is initiated by a photochemical	reacti	ion of ———.			
A.	Enzymes	B.	Hydrogen chloride			
C.	Mercapton	D.	Rhodopsin			
Bor	ic acid is an acid because its mole	cule -				
A.	contains replaceable H⁺ ion					
B.	gives up a proton					
C.	accepts OH ⁻ from water releasing	g pro	ton			
D.	combines with proton from water	mole	ecule			
A base, as defined by Bronsted theory, is a substance which can ———.						
A.	gain a pair of electrons	B.	lose a pair of electrons			
C.	donate protons	D.	accept protons			
Liquid hydrocarbon is converted into gaseous hydrocarbon by ———.						
A.	Distillation	B.	Hydrolysis			
			11741017515			
C.	Oxidation	D.	Cracking			
An		sodiı	Cracking um metal and forms B. On heating			
An	organic compound A reacts with	sodiı r. Wh	Cracking um metal and forms B. On heating			
An with	organic compound A reacts with conc.H ₂ SO ₄ , A gives diethyl ethe	sodiı r. Wh	Cracking um metal and forms B. On heating at are A and B? C_4H_9OH and C_4H_9ONa			
An with A. C.	organic compound A reacts with conc.H ₂ SO ₄ , A gives diethyl ether C ₃ H ₇ OH and CH ₃ ONa	sodiı r. Wh B. D.	Cracking Um metal and forms B. On heating at are A and B? C_4H_9OH and C_4H_9ONa C_2H_5OH and C_2H_5ONa			
An with A. C.	organic compound A reacts with conc.H ₂ SO ₄ , A gives diethyl ether C ₃ H ₇ OH and CH ₃ ONa CH ₃ OH and CH ₃ ONa	sodiı r. Wh B. D.	Cracking Um metal and forms B. On heating at are A and B? C_4H_9OH and C_4H_9ONa C_2H_5OH and C_2H_5ONa			
	A. C. Visi A. C. Bor A. C. D. Liqu	 A. Joule / (grams. K) C. Joule / (mole. K) Vision is initiated by a photochemical A. Enzymes C. Mercapton Boric acid is an acid because its mole A. contains replaceable H⁺ ion B. gives up a proton C. accepts OH⁻ from water releasing D. combines with proton from water A base, as defined by Bronsted theory A. gain a pair of electrons C. donate protons Liquid hydrocarbon is converted into general converted	A. Joule / (grams. K) C. Joule / (mole. K) D. Vision is initiated by a photochemical react A. Enzymes B. C. Mercapton D. Boric acid is an acid because its molecule A. contains replaceable H ⁺ ion B. gives up a proton C. accepts OH ⁻ from water releasing product D. combines with proton from water molecule A base, as defined by Bronsted theory, is a contain a pair of electrons C. donate protons D. Liquid hydrocarbon is converted into gased			

25.		e displacement of electrons in a migent is called —————.	ultiple	e bond in the presence of attacking
	A.	Inductive effect	B.	Electromeric effect
	C.	Hyper conjugation	D.	Resonance
26.	Whi	ich one of the following conformation	ons o	f cyclohexane is chiral?
	A.	Chair	B.	Boat
	C.	Twist boat	D.	Rigid
27.		the Dumas method, the nitroge verted to ————.	n pr	esent in organic compound gets
	A.	Sodium Cyanide	B.	Dinitrogen Gas
	C.	Gaseous Ammonia	D.	Ammonium Sulphate
28.	Pap	per chromatography is an example	of —	chromatography.
	A.	partition chromatography		
	B.	thin layer		
	C.	column		
	D.	adsorption		
29.	The	e oxidation of toluene to benzal	dehy	de by chromyl chloride is called
	—-	Swern oxidation	B.	Etard reaction
	C.	Oppenauer oxidation	D.	Baeyer-Villiger Oxidation
30.	The	e catalyst used in Rosenmund's rec	luctio	n is ———.
	A.	anhydrous AlCl₃	B.	HgSO ₄
	C.	anhydrous ZnCl ₂	D.	Pd/BaSO ₄
31.	Wh	en acetaldehyde is heated with F	ehlin	g's solution it gives a precipitate of
	—— А.	Cu	В.	CuO
	C.	Cu ₂ O	D.	Cu(OH) ₂

Amine that cannot be prepared by Gabricl-phthalimide synthesis is ———.						
A.	methyl amine	B.	benzyl amine			
C.	iso-butylamine	D.	aniline			
Rea	action of aniline with benzaldehyde	e is —	reaction.			
A.	an elimination	B.	an addition			
C.	a substitution	D.	a condensation			
Am	ong the followings, ————	does i	not undergo Cannizzarro's reaction.			
A.	2, 2-dimethylpropanal					
B.	2-methylpropanal					
C.	benzaldehyde					
D.	4-methoxybenzaldehyde					
The	reagent used for the separation	n of a	cetaldehyde from acetophenone is			
A.	C ₆ H ₅ NHNH ₂	B.	NH ₂ OH			
C.	NaHSO ₃	D.	NaOH and I ₂			
		aryl c	diazonium salt in to an aryl halide			
A.	Sandmeyers	B.	Gattermann			
C.	Gattermann-Koch	D.	Finkelatein			
Este	ers can easily be identified using -		——— spectroscopy.			
A.	IR	B.	UV-Visible			
C.	Proton NMR	D.	Mass			
Нус	Irogenation of oils and fats is carri	ed ou	t using ———— catalyst.			
A.	Sn	B.	Ni			
C.	Pb	D.	Pt			
	A. C. Rea A. C. Am. A. B. C. D. The A. C. L. L. C. Hyd. A. C. Hyd. A.	A. methyl amine C. iso-butylamine Reaction of aniline with benzaldehyde A. an elimination C. a substitution Among the followings, A. 2, 2-dimethylpropanal B. 2-methylpropanal C. benzaldehyde D. 4-methoxybenzaldehyde The reagent used for the separation A. C ₆ H ₅ NHNH ₂ C. NaHSO ₃ ———————————————————————————————————	A. methyl amine C. iso-butylamine D. Reaction of aniline with benzaldehyde is— A. an elimination B. C. a substitution D. Among the followings,————————————————————————————————————			

39.	Lucas reagent is a mixture of ———.							
	A.	concentrated nitric acid + hydrated ZnCl ₂						
	B.	concentrated hydrochloric acid + hydrated ZnCl ₂						
	C.	concentrated hydrochloric acid +	anhy	drous ZnCl ₂				
	D.	concentrated nitric acid + anhydro	ous Z	ZnCl ₂				
40.	A sı	weetener used in sugarless gums	and c	candies is ———	 .			
	A.	Xylitol	B.	Ribitol				
	C.	Mannitol	D.	Inositol				
41.	Nitr	ation of pyrrole is best carried out	using	ı .				
	A.	ammonium nitrate						
	B.	nitric acid						
	C.	con. nitric and sulfuric acids						
	D.	acetyl nitrate						
42.	Biuı	ret test is used to find the presence	e of –					
	A.	fats	B.	oils				
	C.	carbohydrates	D.	proteins				
43.		e saponification of a fat or oil is d	using ———	— solution for hot				
	A.	NaOH	B.	KOH				
	C.	NaCl	D.	HCI				
44.	Lea	d nitrate on heating leaves a yellow	v res	idue. It is ———	 .			
	A.	PbO ₂	B.	PbO				
	C.	HPbO ₃	D.	Pb(OH) ₂				
45.	Poly	yacrylonitrile is also known as ——	 .					
	A.	Teflon	B.	Nylon				
	C.	Orlon	D.	Buna-N				

The catalyst used in the preparation of PTFE is ————.							
A.	Persulphate	B.	Peroxide				
C.	Ziegler – Natta	D.	Alkyl mercaptan				
Whi	ch of the following is used both aci	d-bas	se and redox titrations?				
A.	Potassium hydroxide	B.	Potassium dichromate				
C.	Oxalic acid	D.	Acetic acid				
Whi	ch of the following is a suitable red	ox in	dicator?				
A.	Methyl orange	B.	Diphenylamine				
C.	Starch	D.	Potassium ferricyanide				
For the neutralization of 20 mL of 0.1 N solution of nitric acid, ——— m of 0.2 N potassium hydroxide solution is required.							
A.	10	B.	20				
C.	40	D.	2				
	is a true buffer solution.						
A.	CH₃COONa and HCI						
B.	CH₃COONa and HCOOH						
C.	CH₃COONa and CH₃COOH						
D.	CH ₃ COONa and Na ₂ SO ₄						
_		solu	ution of ———— to prevent				
A.	dilute sulfuric acid	B.	dilute hydrochloric acid				
C.	silver nitrate solution	D.	dilute nitric acid				
A sa	alt containing Ni ²⁺ appears in ——		— colour.				
A.	yellow or white	B.	green or blue				
C.	red or orange	D.	pink or violet				
	A. C. Whi A. C. For of 0 A. C. A. B. C. D. AgC pep A. C. A. A. A.	A. Persulphate C. Ziegler – Natta Which of the following is used both aci A. Potassium hydroxide C. Oxalic acid Which of the following is a suitable red A. Methyl orange C. Starch For the neutralization of 20 mL of 0.1 of 0.2 N potassium hydroxide solution A. 10 C. 40 ———————————————————————————————————	A. Persulphate C. Ziegler – Natta D. Which of the following is used both acid-base A. Potassium hydroxide B. C. Oxalic acid D. Which of the following is a suitable redox in A. Methyl orange B. C. Starch D. For the neutralization of 20 mL of 0.1 N so of 0.2 N potassium hydroxide solution is red A. 10 B. C. 40 D. ——————————————————————————————————				

53.		————ions give brick red colour to the flame.					
	A.	Calcium	B.	Strontium			
	C.	Lithium	D.	Potassium			
54.		——— ions forms a yellow precip	oitate	with potassium chromate solution.			
	A.	Lead	B.	Ferric			
	C.	Copper	D.	Silver			
55.	In th	ne test for nitrogen, the sodium fus	sion e	extract is acidified with ————.			
	A.	dilute sulfuric acid					
	B.	B. concentrated sulfuric acid					
	C.	C. dilute hydrochloric acid					
	D.	concentrated hydrochloric acid					
56.		In the analysis of III group basic radicals of salts, the purpose of adding solid ammonium chloride to ammonium hydroxide solution is ————.					
	A.	A. to increase the concentration of OH ⁻ ions					
	B.	3. to suppress the dissociation of ammonium hydroxide					
	C.	to introduce Cl ⁻ ions					
	D.	D. to increase the concentration of NH ₄ ⁺ ions					
57.	Cor	Complexometric titration is used for the determination of ———.					
	A.	halides	B.	acids and bases			
	C.	metal ions	D.	oxides			
58.	Liqu	uid ammonia is an example of a —		 .			
	A.	amphoteric solvent	B.	amphiprotic solvent			
	C.	protogenic solvent	D.	protophillic solvent			
59.	Rar	man frequencies are in the ———		– region.			
	A.	ultra violet	B.	infra red			
	C.	microwave	D.	visible			

60.		e titration in which voltage or potenthe the transfer of redox electrode is ——		of the titration mixture is measured					
	A.	potentiometric	B.	conductometric					
	C.	precipitation	D.	complexometric					
61.	The	The equivalent weight of an acid can be calculated by ———.							
	A.	Molecular weight × basicity							
	B.	Molecular weight / basicity							
	C.	Molecular weight × acidity							
	D.	Molecular weight / acidity							
62.	An aromatic compound containing chlorine, when heated with alcoholic silver nitrate, gives a white precipitate. The compound is ————.								
	A.	chlorobenzene	B.	1, 2-dichlorobenzene					
	C.	benzyl chloride	D.	1, 3-dichlorobenzene					
63.	2, 4	2, 4-dinitrophenyl hydrazine is known as ———.							
	A.	Schiff's reagent	B.	Tollen's reagent					
	C.	Barfoed's reagent	D.	Borsche's reagent					
64.	Mulliken and Barker's test is given by ———.								
	A.	o-aminotoluene	B.	p-nitro toluene					
	C.	p-bromo acetanilide	D.	benzamide					
65.	Atomic Theory was first proposed by ———.								
	A.	J.J. Thomson	B.	Neils Bohr					
	C.	Rutherford	D.	John Dalton					
66.		e line spectrum observed when e L level is referred to as ————		ons fall from higher quantum levels series.					
	A.	Brackett	B.	Lyman					
	C.	Paschen	D.	Balmer					

67.		The ———— states that the velocity and position of an object cannot be measured precisely or simultaneously.						
	A.	Heisenberg uncertainty principle						
	B.	Hund's rule						
	C.	Pauli's exclusion principle						
	D.	Aufbau Principle						
68.	The	The particle nature of light is evident from the phenomenon of ————.						
	A.	Compton Effect	B.	Reflection				
	C.	Diffraction	D.	Polarization				
69.	Acc	According to the Fajans' rule, polarization is high with ———.						
	A.	small cation and small anion						
	B.	large cation and large anion						
	C.	small cation and large anion						
	D.	large cation and small anion						
70.	Ato	Atoms obtain octet configuration when linked with other atoms. This is said by						
	Α.	Lewis	В.	Kossel				
	C.	Langmuir	D.	Sidgwick				
71.	Hov	How many periods and groups are present in the modern periodic table?						
	A.	8 periods and 17 groups	B.	7 periods and 17 groups				
	C.	7 periods and 18 groups	D.	8 periods and 18 groups				
72.		What happens to an element's electropositive nature as it moves from the left to the right in a periodic table?						
	A.	Increases						
	B.	3. Decreases						
	C.	C. Increases first, then decreases						
	D.	D. Decreases first, then increases						

73.	Wha	What is the most efficient method to get water with zero degrees hardness?					
	A.	By Electrolysis	B.	Use of synthetic resins			
	C.	By Calgon process	D.	By Permutit process			
74.	What catalyst is usually used in the laboratory to speed up oxygen production?						
	A.	Vanadium (V) oxide	B.	Copper (II) oxide			
	C.	Manganese (IV) oxide	D.	Titanium (IV) oxide			
75.	Oxygen is not evolved when ozone reacts with ———.						
	A.	sulfur dioxide	B.	potassium iodide			
	C.	hydrogen peroxide	D.	mercury			
76.	The borax bead test can be used to detect the presence of ———.						
	A.	Potassium	B.	Iron			
	C.	Aluminum	D.	Sodium			
77.	When glass is treated with hydrofluoric acid ———— is produced.						
	A.	HSiF ₅	B.	NaF			
	C.	SiF ₄	D.	H_2SiF_6			
78.	When concentrated hydrochloric acid is mixed with concentrated nitric acid, the species produced are —————, —————, —————.						
	A.	NOCI, Cl ₂ and H ₂ O	B.	NO, Cl ₂ and H ₂ O			
	C.	NO ₂ , Cl ₂ and H ₂ O	D.	HNO, HOCI and H ₂ O			
79.	The rare gas having the least ionization potential is ————.						
	A.	Не	B.	Rn			
	C.	Ne	D.	Ar			
80.	Lith	ium carbonate on heating gives —		 .			
	A.	LiO and CO	B.	Li, O ₂ and CO			
	C.	Li ₂ O and CO ₂	D.	Li and CO ₂			

81.	The	The processes of concentrating Au and Ag ores is based on their solubility in						
	A.	A. concentrated nitric acid						
	B.	B. counteracted hydrochloric acid						
	C.	potassium cyanide						
	D.	sodium hydroxide						
82.	Zn	Zn dissolves in an excess of NaOH because of the formation of ———.						
	A.	Na_2ZnO_2	B.	ZnO				
	C.	Zn(OH) ₂	D.	NaZn(OH) ₃				
83.	A common ore of titanium is ———.							
	A.	carnolite	B.	Ilmenite				
	C.	pyrolusite	D.	monozite				
84.	Lan	Lanthanide contraction is caused by the ———— of the 4f electrons.						
	A.	poor shielding effect						
	B.	. change in ionization energy						
	C.	c. size difference						
	D.	radioactive property						
85.	Ethylenediaminetetraacetic acid is a ———— ligand.							
	A.	bidentate	B.	tridentate				
	C.	tetradentate	D.	hexadentate				
86.	Metal-co-ordination theory was proposed by ———.							
	A.	Schrodinger	B.	August Hoffmann				
	C.	Alfred Werner	D.	Albert Werner				
87.	The	The geometrical shape of $K_4[Ni(CN)_4)$ is ———.						
	A.	Octahedral	B.	Square planar				
	C.	Trigonal pyramidal	D.	Tetrahedral				

88.	The undesirable substances present in the ore are called ———.					
	A.	mineral	B.	waste		
	C.	gangue	D.	slag		
89.	Zone refining is used to produce very pure ———.					
	A.	silicon	B.	zinc		
	C.	sodium	D.	copper		
90.	Two monosaccharides are joined together in disaccharide by ———————————————————————————————————					
	A.	peptide	B.	glycosidic		
	C.	phosphodiester	D.	disulphide		
91.	Half-life of a radioactive element X is 3 hrs. It transforms to form a stable element Y. After the birth of X; at time t, the ratio of the nuclei of X and Y is 1:15, what is the value of t?					
	A.	6 hrs	B.	12 hrs		
	C.	24 hrs	D.	48 hrs		
92.	The maximum energy of electrons, obtained by β -decay, is known as					
	A.	zero-point energy	В.	fermi energy		
	C.	radiation energy	D.	end-point energy		
93.	In atom bomb, the energy is obtained due to ———.					
	A.	thermonuclear reaction	B.	chemical reaction		
	C.	controlled fission	D.	uncontrolled fission		
94.	The amino acid sequence of a protein is known as ————.					
	A.	primary structure	B.	secondary structure		
	C.	tertiary structure	D.	quaternary structure		

95.	The	The water solubility of a dye can be increased by introducing ————.					
	A.	C ₂ H ₅ group	B.	COOH group			
	C.	phenyl group	D.	amino group			
96.	Pyridine undergoes nucleophilic substitution with NaNH ₂ at 100°C to form						
	A.	2-aminopyridine	В.	3-aminopyridine			
	C.	4-aminopyridine	D.	2, 4-diaminopyridine			
97.	A de	A deficiency of thiamin is known to cause ———.					
	A.	Scurvy	B.	Pellagra			
	C.	Beribery	D.	Anemia			
98.	Ribo	Riboflavin is also known as ———.					
	A.	Vitamin B ₁	B.	Vitamin B ₂			
	C.	Vitamin B ₁₂	D.	Vitamin C			
99.	A conductance cell is platinized to ———.						
	A.	avoid temperature effects					
	B.	prolong its service					
	C.	avoid capacitance of the cell					
	D.	D. avoid polarization effects					
100	———— is widely recognized as the "Father of Chemistry".						
	A.	Antoine Lavoisier					
	B.	Robert Boyle					
	C.	C. Dmitri Ivanovich Mendeleev					
	D.	John Dalton					

RESPONSE SHEET

1 A B C	D E 26	A B C D E	51 A B C D E	76 A B C D E
2 A B C	D E 27	ABCDE	52 A B C D E	77 A B C D E
3 A B C	D E 28	BABCDE	53 A B C D E	78 A B C D E
4 A B C	D E 29	ABCDE	54 A B C D E	79 A B C D E
5 A B C	D E 30	ABCDE	55 A B C D E	80 A B C D E
6 A B C	D E 31	ABCDE	56 A B C D E	81 A B C D E
7 A B C	D E 32	ABCDE	57 A B C D E	82 A B C D E
8 A B C	D E 33	BABCDE	58 A B C D E	83 A B C D E
9 A B C	D E 34	A B C D E	59 A B C D E	84 A B C D E
10 A B C	D E 35	A B C D E	60 A B C D E	85 A B C D E
11 A B C	D E 36	A B C D E	61 A B C D E	86 A B C D E
12 A B C	D E 37	ABCDE	62 A B C D E	87 A B C D E
13 A B C	D E 38	BABCDE	63 A B C D E	88 A B C D E
14 A B C	D E 39	ABCDE	64 A B C D E	89 A B C D E
15 A B C	D E 40	ABCDE	65 A B C D E	90 A B C D E
16 A B C	D E 41	ABCDE	66 A B C D E	91 A B C D E
17 A B C	D E 42	ABCDE	67 A B C D E	92 A B C D E
18 A B C	D E 43	BABCDE	68 A B C D E	93 A B C D E
19 A B C	D E 44	ABCDE	69 A B C D E	94 A B C D E
20 A B C	D E 45	A B C D E	70 A B C D E	95 A B C D E
21 A B C	D E 46	A B C D E	71 A B C D E	96 A B C D E
22 A B C	D E 47	ABCDE	72 A B C D E	97 A B C D E
23 A B C	D E 48	BABCDE	73 A B C D E	98 A B C D E
24 A B C	D E 49	ABCDE	74 A B C D E	99 A B C D E
25 A B C	D E 50	ABCDE	75 A B C D E	100 A B C D E

ROUGH WORK

ROUGH WORK

ROUGH WORK