Code No. V - 2350

Entrance Examination for Admission to the P.G. Courses in the Teaching Departments, 2025

CSS

MATHEMATICS/MATHEMATICS WITH FINANCE AND COMPUTATION

For office use only

General Instructions

- 1. The Question Paper is having 100 Objective Questions, each carrying one mark.
- 2. The answers are to be (\checkmark) 'tick marked' **only** in the "**Response Sheet**" provided.
- 3. Negative marking: 0.25 marks will be deducted for each wrong answer.

Time: 2 Hours Max. Marks: 100

To be filled in by the Candidate								
To be fined in by the Gandidate								
Register Number	in Figures							
	in words							

For office use only

Choose appropriate answer from the options in the questions.

 $(100 \times 1 = 100 \text{ marks})$

1. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x & \text{if } x \neq 0 \\ 2 & \text{if } x = 0. \end{cases}$ Then the value of $\lim_{x \to 0} f(x)$

is

A. *x*

B. 0

C. 2

D. -x

DONOTWRITEHERE

2. If
$$y = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$$
, then $\frac{dy}{dx}$ is given by

A.
$$\frac{1}{1+x^2}$$

B.
$$\frac{x}{1+x^2}$$

C.
$$\frac{2}{1+x^2}$$

D.
$$\frac{2x}{1+x^2}$$

3. If
$$x = a \cos^3 t$$
 and $y = a \sin^3 t$, the value of $\frac{dy}{dx}$ is

D.
$$-\cot t$$

4. The maximum value of $\left(\frac{1}{x}\right)^x$ is

A.
$$-e^{\frac{1}{e}}$$

B.
$$e^{\frac{-1}{e}}$$

C.
$$e^{\frac{1}{e}}$$

D.
$$-e^{\frac{-1}{e}}$$

5. The points on the curve xy = 20 at which the tangents are parallel to the line 5x + y = 1 are

A.
$$(2, 10)$$
 and $(-2, -10)$

B.
$$(-2, 10)$$
 and $(-2, -10)$

C.
$$(2, 10)$$
 and $(2, -10)$

6. The value of $\iint_D x \, y \, z \, dx \, dy \, dz$ where D is the region bounded by the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$ is

A.
$$\frac{a}{48}$$

B.
$$\frac{a^2}{48}$$

C.
$$\frac{a^2}{24}$$

D.
$$\frac{a}{24}$$

7. The Jacobian of the transformation x + y = u, 2x - 3y = v is

A.
$$\frac{-1}{5}$$

B.
$$\frac{1}{5}$$

C.
$$\frac{1}{4}$$

D.
$$\frac{-1}{3}$$

8. The value of $\int_{0}^{\infty} x^4 e^{-x} dx$ is

- 9. The equation of the tangent to $2y = x^2 3x + 4$ at the point (1, 1) is
 - A. x 2y = 3

B. 2x - y = 1

C. 2x + y = 1

- D. x + 2y = 3
- 10. The area bounded by the curve $y = \frac{x^2}{4}$, the x- axis and the ordinates x = 2 and x = 4 is
 - A. $\frac{13}{3}$

B. $\frac{14}{3}$

C. $\frac{12}{5}$

- D. $\frac{15}{4}$
- 11. The volume of the solid generated by the rotation about the y- axis of the curve $y^2=4x$ between x=0 and x=4 is
 - A. 12 *π*

B. 16 π

C. 24π

- D. 32 π
- 12. The maximum and minimum values of $y = 3x^3 9x^2 27x + 30$ are respectively
 - A. 41 and –51

B. 45 and -51

C. 41 and -54

- D. 45 and -54
- 13. The slope of the line making an angle of 60° with the positive direction of the x axis is
 - A. $\sqrt{3}$

B. $\frac{1}{\sqrt{3}}$

C. $\frac{1}{2}$

D. $\frac{1}{3}$

14. The distance between the two parallel lines 6x-3y+8=0 and 6x-3y+19=0 is

A.
$$\frac{8}{3\sqrt{5}}$$

B.
$$\frac{10}{3\sqrt{5}}$$

$$C. \quad \frac{11}{3\sqrt{5}}$$

D.
$$\frac{19}{3\sqrt{5}}$$

15. The co-ordinates of the foot of the perpendicular from the point (2, -1) to the line 6x - 2y + 7 = 0 is

A.
$$\left(\frac{23}{20}, \frac{-1}{20}\right)$$

B.
$$\left(\frac{-23}{20}, \frac{1}{20}\right)$$

C.
$$\left(\frac{-23}{20}, \frac{-1}{20}\right)$$

D.
$$\left(\frac{23}{20}, \frac{1}{20}\right)$$

16. The point (7, -5) lies on the circle $x^2 + y^2 - 6x + 4y - 12 = 0$. The co-ordinates of the end of the diameter through this point is

B.
$$(-1, -1)$$

C.
$$(1, -1)$$

17. A tangent to the circle $x^2 + y^2 = a^2$ meets the axes of co-ordinates at P and Q. Prove that the locus of mid point of PQ is

A.
$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{4}{a^2}$$

B.
$$\frac{1}{x^2} + \frac{1}{y^2} = \frac{1}{a^2}$$

C.
$$\frac{1}{x^2} - \frac{1}{y^2} = \frac{4}{a^2}$$

D.
$$\frac{1}{x^2} - \frac{1}{y^2} = \frac{1}{a^2}$$

18. The direction cosines of the line joining the points (3, -5, 4) and (1, -8, -2) are

A.
$$\frac{-2}{7}, \frac{3}{7}, \frac{6}{7}$$

B.
$$\frac{2}{7}, \frac{3}{7}, \frac{6}{7}$$

C.
$$\frac{2}{7}, \frac{-3}{7}, \frac{6}{7}$$

D.
$$\frac{2}{7}, \frac{3}{7}, \frac{-6}{7}$$

- 19. The distance of the origin from the plane 6x-3y+2z-14=0 is
 - A. 2

B. 3

C. 4

- D. 5
- 20. The image of the point (1, -2, 3) in the plane 2x-3y+2z+3=0 is
 - A. (3, 4, -1)

B. (3, 4, 1)

C. (-3, 4, 1)

- D. (-3, 4, -1)
- 21. The radius of the sphere $2x^2 + 2y^2 + 2z^2 2x + 4y + 2z 15 = 0$ is
 - A. 2

B. 3

C. 4

- D. 5
- 22. The two planes ax + by + cz + d = 0 and $ax + by + cz + d_1 = 0$, $d \neq d_1$ represent
 - A. same plane

B. perpendicular planes

C. parallel planes

- D. none of the above
- 23. The degree of the differential equation of all curves having normal of constant length *C* is
 - A. 1

B. 3

C. 4

- D. None of the above
- 24. The solution of $\frac{dy}{dx} = \frac{ax + b}{cy + d}$ represents a parabola if
 - A. a = 0, c = 0

B. a=1, b=2

C. a=0, $c \neq 0$

D. a=1, c=1

25. A solution of the equation $x \frac{dy}{dx} = y [\log y - \log x + 1]$ is

A.
$$y^2 = cx \log x$$

B.
$$\log y = cx$$

C.
$$y = xe^{cx}$$

D.
$$\frac{y^2}{x} = cx$$

26. The curves satisfying the differential equation $(1 - x^2)y' + xy = ax$ are

A. ellipses and hyperbolas

B. ellipses and parabolas

C. ellipses and straight lines

D. circles and ellipses

27. The partial differential equation obtained by eliminating the arbitrary constants a and b from z = axy + b is

A.
$$px + qy = 0$$

B.
$$qx - py = 0$$

C.
$$px - qy = 0$$

D.
$$qx + py = 0$$

28. The differential equation of all surfaces of revolution having z – axis as the axis of rotation is

A.
$$y \frac{\partial z}{\partial x} = x \frac{\partial z}{\partial y}$$

B.
$$y \frac{\partial z}{\partial y} = x \frac{\partial z}{\partial x}$$

C.
$$x \frac{\partial z}{\partial y} = y \frac{\partial z}{\partial x}$$

D.
$$x \frac{\partial y}{\partial z} = z \frac{\partial y}{\partial x}$$

- 29. The equation $P_p + Q_q = R$ is known as
 - A. Charpit's equation

- B. Lagrange's equation
- C. Bernoulli's equation
- D. Clairaut's equation

- 30. The equation $p \tan y + q \tan x = \sec^2 z$ is of order
 - **A**. 1

B. 2

C. 3

- D. none of the above
- 31. The partial differential equation $\left(\frac{\partial z}{\partial x}\right) \left(\frac{\partial z}{\partial y}\right) = 3xy$ is
 - A. linear

B. non-linear

C. quasi - linear

- D. semi-linear
- 32. The Laplace transform of \sqrt{x} is

A.
$$\frac{\pi}{2s^{\frac{3}{2}}}$$

$$B. \quad \frac{\sqrt{\pi}}{\sqrt{2} s^{\frac{3}{2}}}$$

C.
$$\frac{\sqrt{\pi}}{2s^{\frac{3}{2}}}$$

D.
$$\frac{\pi}{s^{3/2}}$$

- 33. $L^{-1} \left[\frac{1}{(s-a)^2} \right]$ is
 - A. e^{ax}

B. xe^{ax}

C. *x*

D. sin ax

- 34. $L^{-1} \left[\frac{s+1}{s^2 + 2s + 2} \right]$ is
 - A. $e^x \cos x$

B. $e^x \sin x$

C. $e^{-x} \sin x$

D. $e^{-x} \cos x$

- 35. If \vec{r} is a unit vector, the angle between \vec{r} and $\frac{d\vec{r}}{dt}$ is
 - A. $\frac{\pi}{4}$

B. $\frac{\pi}{3}$

C. $\frac{\pi}{2}$

- D. π
- 36. A particle moves along a curve whose parametric equations are $x = e^{-t}$, $y = 2 \cos 3t$, $z = \sin 3t$. Then the velocity at t = 0 is
 - A. $\vec{i} + 3\vec{k}$

B. $-\vec{i} + 3\vec{k}$

C. $\vec{i} - 3\vec{k}$

- D. $2\vec{i} + 3\vec{k}$
- 37. Directional derivative of the function xyz^2 in the direction of the vector $2\vec{i} + \vec{j} \vec{k}$ at the point (2, 3, 1) is
 - A. $\frac{4}{\sqrt{6}}$

B. $\frac{2}{\sqrt{6}}$

C. $\frac{-2}{\sqrt{6}}$

- D. $\frac{-4}{\sqrt{6}}$
- 38. Which of the following is zero?
 - A. $div \left(grad \vec{f}\right)$

B. $grad\left(div\ \vec{f}\right)$

C. $div (curl \vec{f})$

- D. $curl(curl \vec{f})$
- 39. If $\vec{f} = xy^2 \vec{i} + 2x^2 yz \vec{j} 3yz^2 \vec{k}$ then $div \vec{f}$ at the point (1, -1, 1) is
 - A. 9

B. 7

C. 6

- D. 5
- 40. If $|\vec{a}| = 2$, $|\vec{b}| = 5$, $|\vec{a} \times \vec{b}| = 8$, then $|\vec{a}| \cdot |\vec{b}|$ equals
 - A. 4

B. 6

C. 5

D. 8

- 41. The points with position vectors $60\vec{i} + 3\vec{j}$, $40\vec{i} 8\vec{j}$, $a\vec{i} 52\vec{j}$ are collinear if
 - A. a = -40

B. a = 40

C. a = 20

- D. a = 10
- 42. The number of unit vectors perpendicular to $\vec{a} = (1, 1, 0)$ and $\vec{b} = (0, 1, 1)$ is
 - A. 1

B. 2

C. 3

- D. 4
- 43. If $\vec{f} = x^2 y \vec{i} + xz \vec{j} + 2yz \vec{k}$, the value of *curl curl* \vec{f} at (1, 1, 1) is
 - A. $4\vec{i}$

B. $4\vec{j}$

C. $5\vec{j}$

- D. $8\vec{k}$
- 44. The value of $\int_{2}^{3} \int_{1}^{5} (x+2y) dx dy$ is
 - A. 12

B. 15

C. 16

- D. 32
- 45. The value of $\int_{0}^{1} \int_{y}^{1} e^{x^2} dx dy$ is
 - A. $\frac{e}{2}$

B. e-1

C. e²

- D. $\frac{(e-1)}{2}$
- 46. The volume V in the first octant bounded by $z = y^2$, x = 2 and y = 4 is
 - A. $\frac{125}{3}$

B. $\frac{127}{3}$

C. $\frac{128}{3}$

D. $\frac{130}{3}$

- 47. The value of $\lim_{n \to \infty} \left(\frac{1^2 + 2^2 + ... + n^2}{n^3} \right)$ is
 - A. $\frac{2}{3}$
 - C. $\frac{1}{6}$

- B. $\frac{1}{3}$
- D. $\frac{2}{5}$
- 48. The number of peak points of the sequence 1, $\frac{1}{2}$, $\frac{1}{3}$, -1, -1... is
 - A. 0

B. ′

C. 2

- D. 3
- 49. The area bounded by the parabolas $y^2 = 4ax$ and $x^2 = 4by$ is
 - A. $\frac{8ab}{3}$

B. $\frac{16ab}{3}$

C. $\frac{14 \, ab}{3}$

- D. $\frac{10 ab}{3}$
- 50. The value of $\int_{0}^{\frac{\pi}{2}} \sin^{6} x \, dx$ is
 - A. $\frac{3\pi}{32}$

B. $\frac{5\pi}{32}$

C. $\frac{7\pi}{32}$

- D. $\frac{9\pi}{32}$
- 51. The area of the cardiod $r = a(1 + \cos \theta)$ is
 - A. $\frac{\pi a^2}{2}$

B. $\frac{3\pi a^2}{2}$

C. $\frac{5\pi a^2}{2}$

D. $\frac{7\pi a^2}{2}$

- 52. Number of limit points of the sequence 1, -1, 2, -2,..., n, -n, ... is
 - A. 0

B. 1

C. 2

- D. 3
- 53. Which of the following is a cauchy sequence?
 - A. $\left((-1)^n \right)$

B. (*n*)

C. (n^2)

- D. $\left(\frac{1}{n!}\right)$
- 54. Consider the sequence $(a_n) = 1, 2, 3, 1, 2, 3, \dots$ The $\overline{\lim} a_n$ and $\underline{\lim} a_n$ are respectively
 - A. 1 and 3

B. 1 and 2

C. 3 and 1

- D. 3 and 2
- 55. Which of the following is a property of the sequence (2^n) ?
 - A. It is bounded above
- B. It is bounded below
- C. It is monotonic decreasing
- D. It is convergent
- 56. The harmonic series $\sum \frac{1}{n^p}$ converges if
 - A. $p \le 1$

B. $p \ge 1$

C. p < 1

- D. p > 1
- 57. The value of $\sum \left[\frac{1}{4n^2 1} \right]$ is
 - A. 1

B. -

C. $\frac{1}{3}$

D. $\frac{1}{4}$

- 58. The value of $\lim_{z \to 1-i} [x+i(2x+y)]$ equals
 - A. 1+i

B. 1–*i*

C. 2 + i

- D. 2-i
- 59. Which of the following is differentiable at every point?
 - A. $f(z) = \overline{z}$

B. f(z) = Re z

C. $f(z) = \operatorname{Im} z$

- $D. \quad f(z) = z^2$
- 60. The value of the constant a so that $u(x, y) = ax^2 y^2 + xy$ is harmonic is
 - A. 1

B. 2

C. 3

- D. 4
- 61. The angle of rotation for the transformation $w = z^2$ at z = 2 + i is
 - A. $\tan^{-1}\left(\frac{1}{3}\right)$

B. $\tan^{-1}\left(\frac{1}{2}\right)$

C. $\tan^{-1}\left(\frac{1}{4}\right)$

- D. $\tan^{-1}\left(\frac{1}{5}\right)$
- 62. The first points of the transformation $w = \frac{1}{z}$ are
 - A. 0 and ∞

B. 0 and 1

C. 1 and -1

- D. ∞ and –1
- 63. The residue of cot z at z = 0 is
 - A. 0

B. 1

C. 2

D. 3

64. If C is the circle |z-2|=5, the value of $\int_C \frac{dz}{z-3}$ is

A. $2\pi i$

B. $3\pi i$

C. $4\pi i$

D. $5\pi i$

65. The function $f(z) = \frac{e^z}{z^2 + (z^2 + 9)}$ has

A. 4 simple poles

B. 2 double poles

C. 1 pole of order 4

D. 1 double pole and 2 simple poles

66. Let G be the additive group of integers modulo n. Then O(G) is

A. n

B. *n*!

C. $\phi(n)$

D. n^2

67. Which of the following is not a group?

A. set of all real numbers under usual multiplication

B. set of all $n \times n$ real matrices under addition

C. set of all permutations of a non-empty set x under composition

D. set of all integers under multiplication modulo n, where n is arbitrary

68. Let G be a group such that $a^2 = e$ for all $a \in G$. What best can you say of G?

A. G is cyclic

B. G is abelian

C. G is a semigroup

D. G is non-abelian

69.		et $GL\left(n,F\right)$ be the general linear group of dimension n . Let F be a field ith 2 elements. Then $GL\left(2,F\right)$ is						
	A.	S_3	B.	S_4				
	C.	D_3	D.	D_4				
70.		G be the cyclic group $(\mathbb{Z}_6,\ \oplus)$ and $f(g)\!=\!g$ mod 2 . Then ker f equals		e (\mathbb{Z}_2 , \oplus). Let $f: \mathbb{Z}_6 o \mathbb{Z}_2$ be defined				
	A.	{0}	B.	{0, 2}				
	C.	{0, 4}	D.	{0, 2, 4}				
71.		G be a group and <i>a</i> , <i>b</i> ∈G be suc n o(ab) is	ch tha	at $ab = ba$. If $o(a) = 5$ and $o(b) = 7$,				
	A.	7	B.	5				
	C.	35	D.	12				
72.	Let	G be a cyclic group of order n . Th	en nı	umber of generators of G is				
	A.	1	B.	2				
	C.	n	D.	$\phi(n)$				
73.		A be a subgroups of G and B b t can you say of $A \cap B$?	e a r	normal subgroup of G. Then when				
	A.	It is a subgroup of A	B.	It is a subgroup of B				
	C.	It is a normal subgroup of A	D.	It is a normal subgroup of B				
74.	If th		$\}, heta$	en which of the following is always				
	A.	G∼Aut (G)	B.	Aut (G) $\sim In(G)$				
	C.	$G \simeq In(G)$	D.	None of the above				

- 75. Which of the following is not an isomorphism?
 - A. $\phi: G \rightarrow H$ where $\phi(x) = e' \ \forall \ x \in G$. Hence G and H are groups and e' is the identity of H
 - B. $\phi: G \to G \to \phi(x) = x \forall x \in G$
 - C. $\phi: (\mathbb{R}^+, .) \to \mathbb{R} \to \phi(x) = \log x$
 - D. $\phi_a: G \to G \to \phi_a(x) = axa^{-1} \forall x \in G$ and for a fixed $a \in G$
- 76. Let R be the polynomial ring $\mathbb{Z}_2[x]$ and let (f(x)) denote the ideal generated by f(x). If $f(x) = x^2 + x + 1$ in R, then what best can you say of the quotient ring R/(f(x))?
 - A. It is a ring but not an integral domain
 - B. It is a finite field of order 4
 - C. It is an infinite field
 - D. It is an integral domain but not a field
- 77. Let P be a prime ideal in a commutative ring R and let S be the complement of P in R. Pick out the true statement
 - A. S is a subring of R
 - B. S is an ideal of R
 - C. S is closed under addition
 - D. S is closed under multiplication
- 78. If R is an integral domain, the number of nilpotent elements of R is
 - A. 0

B. 1

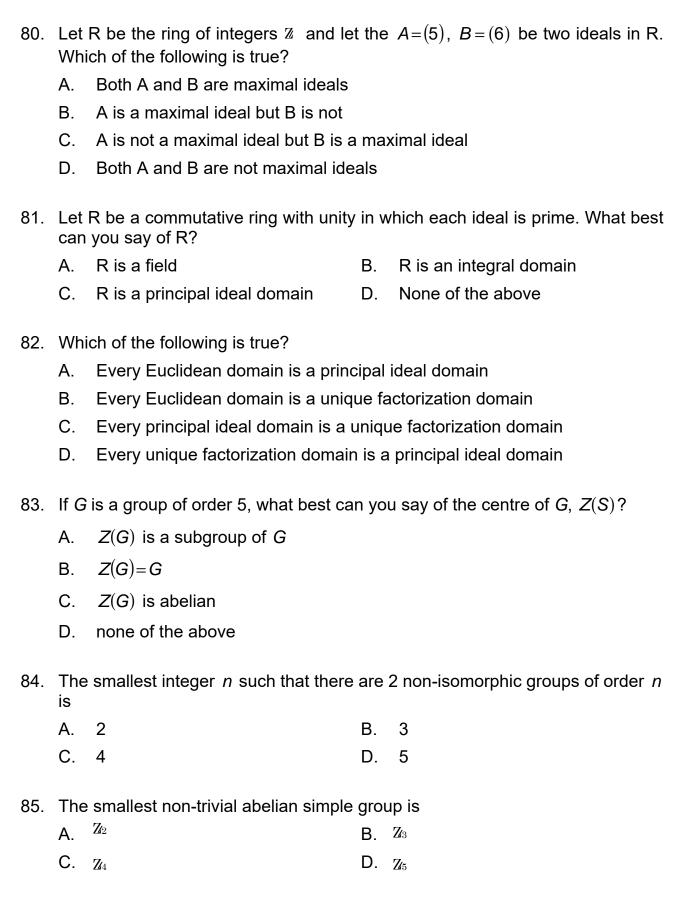
C. 2

- D. 3
- 79. The characteristic of the ring of integers is
 - A. 0

B. 1

C. 2

D. 3



- 86. The vectors 1 and i are
 - A. linearly dependent over the reals
 - B. linearly dependent over the complexes
 - C. linearly independent over the complexes
 - D. linearly dependent over the rationals
- 87. The span of x axis and the xy plane in \mathbb{R}^3 is
 - A. x axis

B. xy – plane

C. yz – plane

- D. zx plane
- 88. The dimension of the subspace [s] of \mathbb{R}^3 where $S = \{ (1, 2, 3), (3, 1, 0), (-2, 1, 3) \}$ is
 - A. 0

B. 1

C. 2

- D. 3
- 89. Every 1- dimensional subspace of \mathbb{R}^3 is
 - A. a point
 - B. a straight line passing through the origin
 - C. a plane passing through the origin
 - D. none of the above
- 90. Which of the following is not a linear map?
 - A. $T: \mathbb{R} \to \mathbb{R}^3$ defined by T(x) = (x, 2x, 3x)
 - B. $T: \mathbb{R} \to \mathbb{R}^3$ defined by $T(x) = (x, x^2, x^3)$
 - C. $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (2x+3y, 3x-4y)
 - D. $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by T(x, y, z) = (x, y)
- 91. The range and the rank of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x_1, x_2) = (x_1 + x_2, x_1)$ are respectively
 - A. R, 1

B. \mathbb{R} , 2

C. \mathbb{R}^2 , 1

D. \mathbb{R}^2 , 2

92. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ and $S: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(x_1, x_2) = (x_1 + x_2, 0)$ and $S(x_1, x_2) = (2x_1, 3x_1 + 4x_2)$. Then ST is defined by

A.
$$ST(x_1, x_2) = (2x_1 + 2x_2, 3x_1 + 3x_2)$$

B.
$$ST(x_1, x_2) = (x_1 + x_2, 3x_1 + 4x_2)$$

C.
$$ST(x_1, x_2) = (2x_1 + 2x_2, 3x_1 + 4x_2)$$

D.
$$ST(x_1, x_2) = (x_1 + x_2, 3x_1 + 3x_2)$$

- 93. If A is a skew symmetric matrix of odd order n, then det A is
 - A. 0

B. 1

C. n

- D. n^2
- 94. The eigen values of the matrix $\begin{bmatrix} 0 & 3 \\ 2 & -1 \end{bmatrix}$ are
 - A. 3, 2

B. 3, -2

C. -3, 2

- D. -3, -2
- 95. If λ is an eigen values of a matrix A, then which of the following is not true?
 - A. λ^2 is an eigen value of A^2
 - B. $\alpha \lambda$ is an eigen values of αA where α is a scalar
 - C. λ is an eigen value of A^T
 - D. $\frac{1}{\lambda}$ is an eigen values of A^T
- 96. Which of the following is not a Hermitian matrix?
 - A. $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$

B. $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$

C. $\begin{bmatrix} 1 & i \\ -i & 1 \end{bmatrix}$

D. $\begin{bmatrix} 1 & -i \\ i & 1 \end{bmatrix}$

- 97. Which of the following is a valid C expression?
 - A. int $my_num = 1,00,000$;
 - B. int my num = 100000;
 - C. int my num = 100000;
 - D. int \$my num = 100000;
- 98. What is # include < stdio.h>in C language?
 - A. inclusion directive
 - B. preprocessor directive
 - C. file inclusion directive
 - D. none of the above
- 99. What is the result of the expression ptr++ in C, where ptr is a pointer?
 - A. increase the value of ptr by 1
 - B. decrease the value of ptr by 1
 - C. move ptr to the next memory location
 - D. none of the above
- 100. What will be the output of the following C code

```
# include <stdio.h>
int main ( )
{
int y = 10000;
int y = 34;
printf ("Hello World! % d\n", y);
return 0;
}
```

- A. compile time error
- B. Hello world! 34
- C. Hello world ! 10000
- D. Hello world! followed by a junk value

RESPONSE SHEET

1 A B C	D E 26	A B C D E	51 A B C D E	76 A B C D E
2 A B C	D E 27	ABCDE	52 A B C D E	77 A B C D E
3 A B C	D E 28	BABCDE	53 A B C D E	78 A B C D E
4 A B C	D E 29	ABCDE	54 A B C D E	79 A B C D E
5 A B C	D E 30	ABCDE	55 A B C D E	80 A B C D E
6 A B C	D E 31	ABCDE	56 A B C D E	81 A B C D E
7 A B C	D E 32	ABCDE	57 A B C D E	82 A B C D E
8 A B C	D E 33	BABCDE	58 A B C D E	83 A B C D E
9 A B C	D E 34	A B C D E	59 A B C D E	84 A B C D E
10 A B C	D E 35	A B C D E	60 A B C D E	85 A B C D E
11 A B C	D E 36	A B C D E	61 A B C D E	86 A B C D E
12 A B C	D E 37	ABCDE	62 A B C D E	87 A B C D E
13 A B C	D E 38	BABCDE	63 A B C D E	88 A B C D E
14 A B C	D E 39	ABCDE	64 A B C D E	89 A B C D E
15 A B C	D E 40	ABCDE	65 A B C D E	90 A B C D E
16 A B C	D E 41	ABCDE	66 A B C D E	91 A B C D E
17 A B C	D E 42	ABCDE	67 A B C D E	92 A B C D E
18 A B C	D E 43	BABCDE	68 A B C D E	93 A B C D E
19 A B C	D E 44	ABCDE	69 A B C D E	94 A B C D E
20 A B C	D E 45	A B C D E	70 A B C D E	95 A B C D E
21 A B C	D E 46	A B C D E	71 A B C D E	96 A B C D E
22 A B C	D E 47	ABCDE	72 A B C D E	97 A B C D E
23 A B C	D E 48	BABCDE	73 A B C D E	98 A B C D E
24 A B C	D E 49	ABCDE	74 A B C D E	99 A B C D E
25 A B C	D E 50	ABCDE	75 A B C D E	100 A B C D E

ROUGH WORK

ROUGH WORK

ROUGH WORK