							_		
E	Entrance Examination for Admission to the P.G. Courses in the Teaching Departments, 2024								16
	CSS								
	MA	THEM. FINAI	ATICS NCE AI	/ MATH ND COI	IEMAT MPUTA	ICS WI	тн		
			Gener	al Instru	<u>ctions</u>				
а <u>т</u> і			400.0		<u> </u>				
1. IN	e Question Papel	r is navin	ig 100 O	bjective	Question	is, each	carrying	one ma	rĸ.
2. Th	e answers are to	be (✔) 't	ick mark	ed' only	in the " F	Respons	se Sheet	t" provide	ed.
3. <u>Ne</u>	gative marking	: 0.25 ma	arks will	be dedu	cted for	each wro	ong ansv	ver.	
Time : 2	Hours						Ν	/lax. Mai	r ks : 100
To be f	lled in by the Ca	ndidate							
Registe	r in Figures								
Numbe	in words								

Choose appropriate answer from the options in the questions.

(100 × 1 = 100 marks)

Code No. **T – 2126**

- 1. Let $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \min\{x, x+1, |x-2|\}$. Then
 - A. *f* decreases on the interval $(-\infty, 1]$
 - B. *f* is not continuous on \mathbb{R}
 - C. *f* is not differentiable at exactly two points
 - D. f increases on the interval [1, 2]

DONOTWRITEHERE

- 2. Let $f:[0,1] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 1 & \text{if } x = 1/4, \\ 2 & \text{if } x = 1/2 \\ 0 & \text{if } x \in [0,1] \setminus \{1/2, 1/4\} \end{cases}$
 - A. *f* is Riemann integrable and $\int_{0}^{1} f(x) dx = 0$
 - B. f is not Riemann integrable

C. *f* is Riemann integrable and
$$\int_{0}^{1} f(x) dx = 2$$

D. *f* is Riemann integrable and $\int_{0}^{1} f(x) dx = 1$

3.	Whi	ch one of the following does not im	ply a	e = 0 ?
	Α.	for every $\in > 0, 0 \le a \le $	В.	for every $\in > 0$, $a < \in$
	C.	for every $\in > 0, 0 \le a \le \in$	D.	for every $\in > 0, -\epsilon < a < \epsilon$
4.	An ratio	algebraic number is a root o nal. The set of algebraic numbers	f a is	polynomial whose coefficients are
	Α.	uncountable	В.	countably infinite
	C.	finite	D.	none of these
5.	The	limit of the sequence $(\sqrt{(n+1)(n+1)})$	<u>2)</u> – n) is
	Α.	3	В.	3/2
	C.	0	D.	$\sqrt{2} - 1$
6.	The	sequence $\left(\frac{2^{n+1}+3^{n+1}}{2^n+3^n}\right)$ converge	s to	
	A.	0	В.	1
	C.	3	D.	2
7.	The	value of the integral $\int_{-\infty}^{\infty} e^{-x^2} dx$ is		
	A.	$\sqrt{\pi}$	В.	$2\sqrt{\pi}$
	C.	0	D.	$\sqrt{\pi}/2$
8.	If Σ	$a_n = a$ and $\sum a_n = b$, and a and b	are fi	nite, then
	Α.	a = b	В.	a≤b
	C.	a = b	D.	$a \ge b$
9.	lf x,	$n_{n} = 1 + (-1)^{n} + \frac{1}{3^{n}}$, then		
	Α.	lim sup $x_n \neq \lim \inf x_n$	В.	$\liminf x_n = -1$
	C.	x_n is a convergent sequence	D.	$\limsup x_n = 1$

10. Let (x_n) be a sequence defined by $x_1 = 2$ and $x_{n+1} = \frac{1}{2} \left(x_n + \frac{2}{x_n} \right)$. Then

- A. (x_n) is an increasing sequence
- B. (x_n) converges to $2\sqrt{2}$
- C. (x_n) converges to a rational number
- D. (x_n) is a decreasing sequence
- 11. For $x \in \mathbb{R}$, let [x] denote the greatest integer *n* such that $n \le x$. The function x[x] is
 - A. continuous everywhere B. continuous if $x \in \mathbb{R} \setminus \mathbb{Z}$
 - C. continuous only at $x = \pm 1, \pm 2,...$ D. bounded on \mathbb{R}
- 12. The subset $A = \{x \in \mathbb{Q} : -1 < x < 0\} \cup \mathbb{N}$ of \mathbb{R} is
 - A. bounded, infinite set and has a limit point in \mathbb{R}
 - B. unbounded, infinite set and has a limit point in \mathbb{R}
 - C. unbounded, infinite set and does not have a limit point in \mathbb{R}
 - D. bounded, infinite set and does not have a limit point in \mathbb{R}
- 13. The sequence of real-valued functions $f_n(x) = x^n$, $x \in [0, 1] \cup \{2\}$, is
 - A. uniformly convergent
 - B. not bounded
 - C. pointwise convergent but not uniformly convergent
 - D. bounded but not pointwise convergent

14.	The	series $\sum_{n=1}^{\infty} \frac{(2n)!}{(n!)^2}$ is			
	Α.	converges to 1	В.	converges to 1/2	
	C.	converges to e	D.	divergent	

15. If (x_n) be a sequence such that $x_n \ge 0$ for every $n \in \mathbb{N}$ and if $\lim_{n \to \infty} (-1)^n x_n$ exists then which one of the following statements is true?

- A. The sequence (x_n) is divergent
- B. The sequence (x_n) is unbounded
- C. The sequence (x_n) is not a Cauchy sequence
- D. The sequence (x_n) is a Cauchy sequence

16. For the function $f(x) = \frac{\sin x}{x^2}$, how many points exist in the interval $[0, 7\pi]$ such that f'(c) = 0

- 17. The function $f(x) = x^4 6x^2$ is increasing on the intervals
 - A. $(-\infty, -\sqrt{3})$ and $(0, \sqrt{3})$ onlyB. $(\sqrt{3}, \infty)$ onlyC. $(0, \sqrt{3})$ onlyD. $(-\sqrt{3}, 0)$ and $(\sqrt{3}, \infty)$ only

18. The value of the double integral $\int_{0}^{1} \int_{0}^{x^{2}} e^{y/x} dx dy$ is A. 0 B. 1/2

C. -1/2 D. e

- 19. The value of the triple integral $\int_{0}^{x/2 \sin \theta} \int_{0}^{r} r \, dr \, d\theta \, dz$ is A. 1/4 B. 1/2
 - C. 0 D. –1

20. The area of the region in the first quadrant enclosed by the graphs of $x = y^2$ and x = y + 2 is

A.9B.3/2C.9/2D.3

21. If *C* is the circle $x^2 + y^2 = 1$ taken in anticlockwise rotation, then the value of the integral $\int_C (x^{2024} y^{2025} + 2025y) dx + (x^{2025} y^{2024} + 2024x) dy$ is

Α.	π	В.	2π
C.	$\pi/2$	D.	0

22. Consider a closed surface *S* surrounding volume *V*. If \vec{r} is the position vector of *a* point inside *S*, with the unit outward normal \vec{n} on *S*, then the value of the integral $\iint 5\vec{r} \cdot \vec{n} dS$ is

Α.	5 <i>V</i>	В.	V
C.	0	D.	15V

23. For what value of c does the line $\frac{x}{2} = \frac{y}{c} = \frac{z}{3}$ lie in the plane x + 3y + 5z = 0?

- A. -13/3 B. 17/3 C. 13/3 D. -17/3
- 24. The surface $xyz + 2yz + x^2 = 19$ has a normal line *T* at *P* = (1, 2, 3). Then T meets the x y plane at point Q which is
 - A. (8, 9, 6) C. (6, 5, 0) B. (-3, -5/2, 0) D. (3, 5/2, 0)

25. Let $x(u,v) = ue^{u} + v$ and $y(u,v) = ve^{2u}$. Then the Jacobian $\frac{J(x,y)}{J(u,v)}$ at u = 1, v = 0 is A. eC. e^{2} D. $2e^{3}$

26. Consider the line integral $\int_{C} (2x+y)dx + (x+z)dy + (y-2z)dz$ where *C* is some curve joining the points A = (0, 0, 0) and B = (1, 5, 5). The value of the integral is A. -18 B. 6 C. 56 D. 32

27. Let *F* denote a vector field and let *f* define a scalar function of three variables. Which of the following expressions is a meaningful expression?

Α.	div (div <i>F</i>)	В.	grad (grad <i>F</i>)
C.	curl(curl <i>F</i>)	D.	grad (grad <i>f</i>)

- 28. The equations of the lines joining the vertex of the parabola $y^2 = 6x$ to the points on it which have abscissa 24 are
 - A. $2y \pm x = 0$ B. $2x \pm y = 0$
 - C. $x \pm 2y = 0$ D. $y \pm x = 0$

29. Find the inverse Laplace transform of the function $\frac{3}{(s+1)^3}$

- A. $(3/2)t^2e^t$ B. $3t^2e^{-t}$
- C. $(3/2)t^2e^{-t}$ D. t^2e^{-t}

30. The center of the ring of 2×2 matrices over \mathbb{R}

A.
$$\left\{ \begin{pmatrix} 0 & a \\ b & 0 \end{pmatrix} : a, b \in \mathbb{R} \right\}$$

B.
$$\left\{ \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix} : a \in \mathbb{R} \right\}$$

C.
$$\left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} : a, b \in \mathbb{R} \right\}$$

D.
$$\left\{ \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} : a \in \mathbb{R} \right\}$$

7

- 31. The set of units of the Gaussian ring $z[i] = \{a + ib : a, b \in \mathbb{Z}\}$ is
 - A. $i \mathbb{Z}$ B. \mathbb{Z} C. $\mathbb{Z} \cup i \mathbb{Z}$ D. $\{\pm 1, \pm i\}$
- 32. Group of automorphisms of \mathbb{Z}_{10} is isomorphic to
 - A. $\mathbb{Z}_2 \times \mathbb{Z}_2$ B. \mathbb{Z}_4
 - C. \mathbb{Z}_{10} D. \mathbb{Z}_2
- 33. The system of equations $6x_1 2x_2 + 2\alpha x_3 = 1$ and $3x_1 x_2 + x_3 = 5$ has no solution if α is equal to
 - A. 1 B. -5 C. 5 D. -1
- 34. Let *G* be a group of order 6. Then
 - A. *G* is abelian but not cyclic
 - B. G is cyclic
 - C. there is not sufficient information to determine G
 - D. G has 2 possibilities (upto isomorphism)
- 35. The number of group homomorphisms from \mathbb{Z}_{12} to \mathbb{Z}_{13} is
 - A. 0 B. 1 C. 2 D. 3
- 36. Let *G* be a group and *H* be a subgroup of *G*. Which of the following statements is true?
 - A. If *H* is a normal subgroup of *G* then gH = Hg for all $g \in G$
 - B. If *H* is a normal subgroup of *G* then $gH \neq Hg$ for all $g \in G$
 - C. If $gH \neq Hg$, for some $g \in G$ then H is a normal subgroup of G
 - D. If gH = Hg, for some $g \in G$ then *H* is a normal subgroup of *G*

- 37. Which of the following statements are true?
 - every group of order 4 is cyclic Α.
 - Β. every group of order 6 is abelian
 - C. every subgroup of a cyclic group is cyclic
 - every group of order 6 is cyclic D.
- 38. The smallest non abelian group is
 - Α. Β. Klein 4 group S_3
 - C. D. D_{4} \mathbb{Z}_4
- 39. In the Klien 4 group
 - Α. order of every element except identity is 2
 - Β. order of every element is 2
 - C. order of every element except identity is 3
 - D. order of every element except identity is 4

40. The infinite cyclic group \mathbb{Z} has exactly

- Α. five generators Β. two generators
- C. one generator D. three generators

41. The number group homomorphisms from $\mathbb{Z}_{25} \to \mathbb{Z}$ is

- Α. 3 2 Β. C. 4 1
- D.

42. The number of ring homomorphisms from \mathbb{Z} to \mathbb{Z} is

- Α. 2 B. 0
- C. 1 infinite D.
- 43. In a division ring there are exactly
 - Α. only one idempotent B. two idempotents
 - C. four idempotents D. three idempotents

T - 2126

44. If *p* is a prime number, $x^p + a$ is irreducible over $\mathbb{Z}_p[x]$

- A. for some values of $a \in \mathbb{Z}_p$ B. exactly two values of $a \in \mathbb{Z}_p$
- C. exactly one value of $a \in \mathbb{Z}_p$ D. for all $a \in \mathbb{Z}_p$

45. The polynomial $f(x) = x^2 + 8x - 2$ is

- A. irreducible over \mathbb{Q} B. irreducible over \mathbb{R}
- C. reducible over \mathbb{R} D. irreducible over \mathbb{Q} and \mathbb{R}
- 46. Which of the following statements are true?
 - A. $\{0, 2, 4\}$ is a prime but not a maximal ideal of \mathbb{Z}_6
 - B. $\{0, 2, 4\}$ is not an ideal of \mathbb{Z}_6
 - C. $\{0, 2, 4\}$ is a prime and a maximal ideal of \mathbb{Z}_6
 - D. $\{0, 2, 4\}$ is not a prime but a maximal ideal of \mathbb{Z}_6

47.
$$\frac{\mathbb{Z}_{3}[x]}{\langle x^{3} + c \rangle}$$
 is not a field if
A. $c = 2$
C. $c = 1$
B. $c = 3$
D. $c = 0$

- 48. The number of diagonal 3×3 complex matrices A such that $A^3 = I$ is
 - A. 9 B. 27 C. 3 D. 1
- 49. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by $T(x_1, x_2, x_3) = (x_1 + x_2, x_2 + x_3, x_3 + x_1)$. Then an eigenvalue of T is A. 0 B. 3 C. 4 D. 2

- 50. The solutions $x^2y'' + xy' + 4y = 0$ are
 - $\cos(4\log x)$, $\sin(4\log x)$ B. $\cos(\log x)$, $\sin(\log x)$ Α.
 - $\cos(2\log x)$, $\sin(2\log x)$ $\cos(\log x)$, $\sin(2\log x)$ C. D.

51. An integrating factor of the differential equation $(y^2x - x^2y)dx + x^3dy = 0$ is

- B. $(xy)^{-2}$ (xy)Α.
- C. $(xy)^{-1}$

52. The derivative of the function $y = \sin^{-1}\left(\sqrt{\frac{x-1}{x+1}}\right) + \sec^{-1}\left(\sqrt{\frac{x+1}{x-1}}\right)$ is 2 Α. Β. 1

- 0 C. 3 D.
- 53. The distinct eigenvalues of the matrix $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ \end{pmatrix}$ are B. 1, 2 A. 0, -1 C. 0, 1 D. 0, 2

54. If -1, 2,3 are the eigenvalues of a 3×3 matrix, then its determinant is

- 0 A. Β. 4 C. -6 D. 6
- 55. The dimension of the vector space \mathbb{R} over \mathbb{Q} is
 - Α. 0 Β. infinite C.
 - 1 D. 2

- D. $(xy)^{-3}$

56. Consider the following subsets of the vector space \mathbb{R}^2 :

S1: $\{(x, y): x + y \ge 0\}$

S2: $\{(x, y): x^2 + y^2 \ge 1\}$

Which of the following statements are true?

- A. S1 is not a subspace but S2 is a subspace
- B. neither S1 nor S2 is a subspace of \mathbb{R}^2
- C. S1 is a subspace but S2 is not a subspace
- D. both S1 and S2 are subspaces of \mathbb{R}^2
- 57. If V_1 and V_2 are 3-dimensional subspaces of *a* 4 dimensional vector space *V*, then the smallest possible dimension of $V_1 \cap V_2$ is

A.	3	В.	1
C.	2	D.	4

- 58. Let *W* be the vector space of all symmetric matrices over \mathbb{R} . Then the dimension of *W* is
 - A. 3 B. 1 C. 2 D. 0

59. The 10×10 matrix with all entries 1 have rank

- A. 10
 B. 0

 C. 1
 D. 2
- 60. A consistent linear system of two equations in two unknowns has
 - A. Exactly one solution
 - B. Infinitely many solutions
 - C. Exactly one solution or an infinite number of solutions
 - D. Exactly two solutions

61. Let $A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$ be such that A has real eigenvalues. Then

A.
$$\theta = 0, \frac{-\pi}{2}$$
 B. $\theta = 0, \frac{-3\pi}{2}$

C.
$$\theta = 0, \pi$$
 D. $\theta = 0, \frac{\pi}{2}$

62. A homogeneous system of 5 linear equations in 6 variables admits

- A. Finite, but more than 2 solutions in \mathbb{R}^6
- B. No solution in \mathbb{R}^6
- C. Infinitely many solutions in \mathbb{R}^6
- D. A unique solution in \mathbb{R}^6

63. Suppose the matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ has an eigenvalue 1 with associated eigenvector $x = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$. What is $A^{50}x$? A. $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ C. $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ B. $\begin{bmatrix} 2^{50} \\ 3^{50} \end{bmatrix}$ D. $\begin{bmatrix} a^{50} & b^{50} \\ c^{50} & d^{50} \end{bmatrix}$

64. Given that a 3 × 3 matrix satisfies the equation $A^3 - A^2 + A - I = 0$. Then the value of A^4 is

A.
$$-A^3 - A^2 + A - I = 0$$

- B. $A^3 + A^2 + A I = 0$
- C. Not computable from the given data
- D. 1

65. If A and B are square matrices of the same order, then tr(AB) =

- A. tr(B)tr(A) B. tr(B)+tr(A)
- C. tr(BA) D. tr(B+A)

66. The differential equation 2y dx - (3y - 2x) dy = 0 is

- A. Not exact and homogeneous but not linear
- B. Exact and non-homogeneous but not linear
- C. Exact and homogeneous but linear
- D. Is exact and homogeneous but not linear
- 67. Consider the 2nd-order linear equation with constant coefficients : y'' + ay' + y = 0If r_1 and r_2 are the roots of its characteristic equation, then what is $r_1^2 + r_2^2$?
 - A. $a^2 2b$ B. $a^2 4b$
 - C. $a^2 + 2b$ D. $a^2 + 4b$
- 68. Consider the differential equation : y'' + y = 0. Which of the following is not a solution?
 - A. cos *x* B. tan *x*
 - C. $\sin x$ D. $\cos(x+1)$
- 69. The order of a differential equation whose general solution is $y = A \sin x + B \cos x$, where A and B are arbitrary constants is

Α.	1	B.	2
C.	3	D.	4

70. An integrating factor of the differential equation $\frac{dy}{dx} = \frac{1}{x+y+2}$ is

- A. e^y B. e^{-x} C. e^{-y} D. e^x
- 71. For which value of k is the differential equation $(x^k + y^k)dx + 2xy dy = 0$ is homogeneous.
 - A. k = 1B. k = 0C. k = 2D. $k = \frac{1}{2}$

72.	lf th valu	e vector function $V = (x+3y)i + (a+3y)i + (a$	y – 2	z)j+(x+az) is solenoidal then the
	Α.	0	В.	2
	C.	-2	D.	1
73.	The <i>F</i> =	scalar potential of (<i>y</i> + sin z) <i>i</i> + x <i>j</i> + x cos z <i>k</i> is	the	conservative vector field
	Α.	ху	В.	$xy + \sin z$
	C.	$x + \sin z$	D.	sin z
74.	If $\frac{d}{d}$	$\frac{du}{dt} = w \times u, \ \frac{dv}{dt} = w \times v, \ \text{then} \ \frac{d}{dt}(u \times v)$	/)	
	Α.	$w \times (u \times v)$	В.	0
	C.	$u \times (w \times v)$	D.	$v \times (u \times w)$
75.	The	value of the integral $\int (xdy - ydx)$	arour	nd the circle $x^2 + y^2 = 1$ is
	Α.	0	В.	π
	C.	2π	D.	-2π
76.	Whi A. B. C. D.	ch of the following is true about <i>f</i> (a Continuous and differentiable Neither continuous nor differential Continuous but not differentiable Differentiable but not continuous	z) = z	² ?
77.	Wha #inc int {	at will be the output of the following lude <stdio.h> main () int y = 10000; int y = 34; printf (" Hello World! %d\n", y); return 0;</stdio.h>	C co	de?
	∫ ∆	Hello World 1000	R	Hello Worldt followed by a junk value
	С.	Compile time error	D.	Hello World! 34
			-	-

78. What will be the final value of *x* in the following C code?

```
#include <stdio.h>
void main ()
{
    int x = 5 * 9 / 3 + 9;
}
A. 3 B. Depends on the compiler
C. 3.75 D. 4
```

79. How many times *i* value is checked in the following C program?#include <stdio . h>

```
80. What will be the output of the following code? #include <stdio . h>
```

```
int main () {
     int a = 3, b = 5;
     int t = a;
     a = b;
     b = t;
     printf("%d %d", a, b);
     return 0;
}
Α.
     55
                                          B.
                                                33
C.
     53
                                           D.
                                                35
```

16

```
81. Which of the following is not a keyword in C?
     Α.
          int
                                             Β.
                                                  char
     C.
          include
                                             D.
                                                  str
82. What is the output of the following C code?
     int main ()
     {
     int x = 10;
     printf("%d", x++ + ++x);
     return 0;
     }
     A.
          23
                                             B.
                                                  21
     C.
          22
                                                  20
                                             D.
83. What is the output of this recursive function call?
          int main()
          {
               printf("%d ", factorial(5));
               return 0;
          }
     int factorial (int n)
          {
               if (n==0)
               return 1;
          else
               return n * factorial (n - 1);
          }
          5
                                             Β.
     Α.
                                                  24
     C.
                                                  120
          Error
                                             D.
```

17

84. If a function f(z) is continuous in region *D* and if $\int_C f(z)dz = 0$, taken around any simple closed contour *C* in *D*. Then f(z) is A. may or may not be Analytic B. analytic C. not Analytic D. none of these

85. The value of the integral $\int_C \frac{dz}{z^2 - 2} dz$, where *C* is the circle |z| = 2 is

 A. $-\pi i$ B. 0

 C. $2\pi i$ D. πi

86. If
$$z = x + iy$$
, then $|e^{iz}|$ is equal to
A. e^{-y} B. 1

- C. e^{y} D. $e^{x^2+y^2}$
- 87. Consider the functions $f(z) = x^2 + iy^2$ and $g(z) = x^2 + y^2 + ixy$. Then which of the following statements are true
 - A. g is analytic but not f B. both f and g are analytic
 - C. f is analytic but not g D. neither f nor g is analytic

88. The coefficient of $\frac{1}{z}$ in the expansion of $\log\left(\frac{z}{z+1}\right)$, |z| > 1 is A. -1 B. 1/2 C. -1/2 D. 1

- 89. If *D* is the open unit disk in \mathbb{C} and $f : \mathbb{C} \to D$ is analytic with f(10) = 1/2, then f(10+i) is
 - A. 1/2 B. *i* C. 10+*i* D. -*i*

90. The singular solutions of the differential equation $y = px + \frac{1}{p}$ are

A. $\pm 2\sqrt{x}$ B. $\pm x^2$

C.
$$\pm \sqrt{x}$$
 D. none of these

91. The function $f(z) = z^2$ maps the first quadrant onto

- A. third quadrant B. itself
- C. right half-plane D. upper half-plane

92. Which of the following is not the real part of the analytic function?

- A. $1/(x^2 + y^2 + z^2)$ B. $x^2 - y^2$ C. $\cos x \cosh y$ D. $x + x/(x^2 + y^2)$
- 93. The radius of convergence of $\sum_{n=0}^{\infty} \frac{\left(1+\frac{1}{n}\right)^{n^2}}{n^3}$ A. e B. ∞ C. 1/e D. 0

94. The residue of the function $f(z) = \frac{1 + e^z}{\sin z + z \cos z}$ at z = 0 is A. $2\pi i$ B. πi

95. The value of the integral $\int_{|z|=2} (x^2 - y^2 + 2ixy) dz$ is

A. *πi*B. 1
C. 0
D. 2*πi*

- 96. The value of the integral $\int_{|z|=2} \frac{e^{2z}}{(z+1)^4} dz$ is
 - Α. πe Β. $2\pi e$ C. $8\pi i/3e^2$ D. $8\pi e$
- 97. The fixed points of $f(z) = \frac{z-1}{z+1}$ are
 - Α. 0, 1 1, 2 Β. C. ±1

98. The function $f(z) = |z|^2$ is

- differentiable everywhere Α.
- differentiable at a countable number of points Β.
- C. differentiable only at z = 0
- D. nowhere differentiable

99. If f(z) and $\overline{f(z)}$ are analytic, then

- A. f(z) = zf is a constant function B. C. $f(z) = z^2$ none of these D.
- 100. The equation $a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n = 0$ has at least one root between 0 and 1 if

D.

±i

- A. $\frac{a_1}{n+1} + \frac{a_2}{n} + \ldots + a_n = 0$
- C. $\frac{a_0}{n+1} + \frac{a_1}{n} + \dots + a_n = 0$

B.
$$\frac{a_0}{n} + \frac{a_1}{n-1} + \dots + a_n = 0$$

D. None of these

T - 2126

ANSWER SHEET

1	Α	В	С	D	Е
2	Α	В	С	D	Ε
3	Α	В	С	D	Е
4	Α	В	С	D	Е
5	Α	В	С	D	Е
6	Α	В	С	D	Е
7	А	В	С	D	Е
8	А	В	С	D	Е
9	Α	В	С	D	Е
10	Α	В	С	D	Е
11	Α	В	С	D	Е
12	А	В	С	D	Е
13	Α	В	С	D	Е
14	А	В	С	D	Е
15	Α	В	С	D	Е
16	Α	В	С	D	Е
17	Α	В	С	D	Е
18	А	В	С	D	Е
19	А	В	С	D	Е
20	А	В	С	D	Е
21	Α	В	С	D	Е
22	Α	В	С	D	Е
23	Α	В	С	D	Е
24	Α	В	С	D	Е
25	Α	В	С	D	Е

26	А	В	С	D	Е
27	Α	В	С	D	Е
28	Α	В	С	D	Е
29	Α	В	С	D	Е
30	Α	В	С	D	Е
31	А	В	С	D	Е
32	А	В	С	D	Е
33	А	В	С	D	Е
34	А	В	С	D	Е
35	А	В	С	D	Е
36	А	В	С	D	Е
37	Α	В	С	D	Е
38	Α	В	С	D	Е
39	Α	В	С	D	Е
40	А	В	С	D	Е
41	Α	В	С	D	Е
42	Α	В	С	D	Е
43	А	В	С	D	Е
44	Α	В	С	D	Е
45	Α	В	С	D	Е
46	Α	В	С	D	Е
47	Α	В	С	D	Е
48	Α	В	С	D	Е
49	Α	В	С	D	Е
50	А	В	С	D	Е

ROUGH WORK

ROUGH WORK

ROUGH WORK