Code No.	T – 2117
----------	----------

Entrance Examination for Admission to the P.G. Courses in the Teaching Departments, 2024

CSS

CHEMISTRY/CHEMISTRY WITH SPECIALIZATION IN (RENEWABLE – ENERGY/FUNCTIONAL MATERIALS)

	E	NERGY	r/FUNC	CTIONAL	_ MAT	ERIAL:	S)		
			Gene	ral Instruc	tions				
1. The	The Question Paper is having 100 Objective Questions, each carrying one mark.								
2. The	The answers are to be (✓) 'tick marked' only in the " Response Sheet " provided.								
3. <u>Neg</u>	ative marking	0.25 ma	arks will	l be deduc	ted for	each wro	ong ansv	wer.	
Time: 2	Hours						N	Max. Maı	ks : 100
To be fill	ed in by the Ca	ndidate							
Register	in Figures								
Number	in words								

Choose appropriate answer from the options in the questions.

 $(100 \times 1 = 100 \text{ marks})$

- 1. Azeotropic mixture are
 - A. Constant temperature boiling mixture
 - B. Those which boils at different temperature
 - C. Mixture of two solids
 - D. None of the above

2.	\//hiah	of the	following	io	displaced	by Eac
∠.	VVIIICII	OI LITE	TOHOWITIG	15	uispiaceu	DV FE

A. Ag

B. Zn

C. Na

- D. All of the above
- 3. In NaCl crystal, each Cl⁻ ion surrounded by
 - A. 4 Na⁺ ions

B. 6 Na⁺ ions

C. 1 Na⁺ ions

D. 2 Na⁺ ions

2

4.	Bor	on nitride has the structure of the ty	ype						
	A.	Graphite type							
	B.	Diamond type							
	C.	Both diamond and graphite type							
	D.	NaCl type							
5.	Whi	te phosphorous is							
	A.	A monatomic gas	B.	P4, tetrahedral solid					
	C.	P8, a crown	D.	A linear diatomic molecule					
6.	The	conditions for aromaticity is							
	A.	Molecules must have clouds of de	eloca	lized π-electrons					
	B.	Molecules must contain (4n+2) π -	elect	trons					
	C.	Both A and B							
	D.	None of the above							
7.	Suc	rose on hydrolysis							
	A.	Glucose and maltose	B.	Glucose and lactose					
	C.	Glucose and fructose	D.	Only glucose					
8.	A Z	witter ion is							
	A.	A. Negatively charged ion without metal atom							
	B.	Heavy ion with a small charge on	it						
	C.	An ion with positive and negative	char	ge at different point on it					
	D.	A positively charged ion without a	met	al ion					
9.	The	safest and the most common alter	rnativ	e of sugar is					
	A.	Glucose	B.	Aspartame					
	C.	Saccharin	D.	Cyclodextrin					

10.	Whi	ch of the following is used for mak	ing aı	tificial silk?
	A.	Adipic acid	B.	Starch
	C.	Cellulose	D.	Terepthalic acid
11.	The	number of optical isomers of CH ₃ 0	CH(O	H)CH(OH)CHO is
	A.	1	B.	2
	C.	3	D.	4
12.	End	I product of the hydrolysis of XeF ₆	is	
	A.	XeF ₄ O	B.	XeF ₂ O ₂
	C.	XeO ₃	D.	XeO ₆
13.	lder	ntify the gas which is readily adsort	oed b	y activated charcoal
	A.	H_2	B.	N_2
	C.	O_2	D.	SO ₂
14.		rate constant for a chemical rection will be	actio	n has unit L mol ⁻¹ s ⁻¹ , order of the
	A.	0	B.	1
	C.	2	D.	3
15.		e electron affinity and ionization po bectively. The electro negativity of i		al of iodine are 3.43 eV and 10.5 eV
	A.	3.48	B.	1.5
	C.	2.0	D.	2.48
16.		ionic radii of A ⁺ and B ⁻ ions are rdination number of each ion is	0.98	3×10^{-10} m and 1.81×10^{-10} m. The
	A.	8	B.	4
	C.	8 and 4	D.	6
		4	1	T – 2117

17.	The	paramagnetic species is		
	A.	BaO ₂	B.	SiO ₂
	C.	TiO ₂	D.	KO ₂
18.	The	polymeric species (SN) _X is a/an		
	A.	Three Dimensional conductor	B.	Two dimensional conductor
	C.	Insulator	D.	One dimensional conductor
19.	Whi	ch of the following lanthanoid does	NOT	show luminescence?
	A.	Eu ³⁺	B.	Lu ³⁺
	C.	Tb ³⁺	D.	Pm ³⁺
20.	Nuc	lear particles which are presently tl	nougl	nt to hold the nuceus together are
	A.	Protons	B.	Neutrons
	C.	Electrons	D.	Mesons
			_	
21.	The	property measured in Thermo Gra	vime	tric Analysis
21.	The A.	property measured in Thermo Gra Change in weight	vime B.	tric Analysis Rate of change in weight
21.				•
	A. C.	Change in weight	B. D.	Rate of change in weight
	A. C.	Change in weight Heat evolved or absorbed	B. D.	Rate of change in weight
	A. C. Num	Change in weight Heat evolved or absorbed hber of naturally occurring actinides	B. D. are B.	Rate of change in weight Change in temperature
22.	A. C. Num A. C.	Change in weight Heat evolved or absorbed hber of naturally occurring actinides One	B. D. s are B. D.	Rate of change in weight Change in temperature Two Four
22.	A. C. Num A. C.	Change in weight Heat evolved or absorbed hber of naturally occurring actinides One Three	B. D. s are B. D.	Rate of change in weight Change in temperature Two Four
22.	A. C. Nun A. C.	Change in weight Heat evolved or absorbed Three absorbance of solution having 20%	B. D. s are B. D. 6 tran	Rate of change in weight Change in temperature Two Four nsmittance is
22.	A. C. Num A. C. The A. C.	Change in weight Heat evolved or absorbed Three absorbance of solution having 20% 0.301	B. D. s are B. D. 6 tran B.	Rate of change in weight Change in temperature Two Four nsmittance is 0.699
22. 23.	A. C. Num A. C. The A. C.	Change in weight Heat evolved or absorbed The of naturally occurring actinides One Three absorbance of solution having 20% 0.301 1.301	B. D. s are B. D. 6 tran B.	Rate of change in weight Change in temperature Two Four nsmittance is 0.699

25.		increasing the temperature, the attion respectively	cond	uctivities of copper wire and CuSO ₄			
	A.	Increase, Decrease	B.	Decrease, Increase			
	C.	Increase, Increase	D.	Decrease, Decrease			
26.		ays of wavelength 0.154nm are diuming that n=1, calculate the dista		ted from a crystal at angle of 14.17°, between layers in the crystal			
	A.	0.3145 nm	B.	3.145 nm			
	C.	31.45 nm	D.	314.5 nm			
27.	Whi	ch of the following method (s) use	to ge	nerate free radicals?			
	A.	Thermal cracking	B.	Photolytic Bond hemolysis			
	C.	Electron transfer	D.	All of the above			
28.		The mildest reducing agent which reduces only carbonyl group in presence of nitro, carboxyl, double bond and ester group, is					
	A.	LiAIH ₄	B.	Na-NH ₃			
	C.	NaBH ₄	D.	H ₂ -Ni			
29.	Which of the following oxide has the highest percentage in a usual sample of Portland cement?						
	A.	SiO ₂	B.	CaO			
	C.	Al_2O_3	D.	SO ₂			
30.	In Fe ₂ (CO) ₉ , the two iron atoms are						
	A.	Linked only directly					
	B.	Linked directly along with 3 CO m	oleci	ules as bridging ligands			
	C.	Linked only through 3 CO molecu	les a	s bridging ligands			
	D.	Joined through one CO group as	bridg	ing ligands			
	υ.	Joined through one CO group as	nuag	ing ilganus			

31.	ine	forces acting between noble gase	s are	
	A.	Vander Waals force	B.	Ion-dipole force
	C.	London-dispersion force	D.	Magnetic force
20	The	azanalysis of a triple band produc		
32.	me	ozonolysis of a triple bond produc	es	
	A.	A mixture of aldehyde/ketone and	l carb	poxylic acid
	B.	A mixture of aldehydes/ketones		
	C.	A mixture of carboxylic acids		
	D.	CO ₂ and H ₂ O		
33.	Whi	ch of the following is an example o	f an o	electrophilic substitution?
	A.	Chlorination of methane	В.	Dehydration of ethanol
	C.	Nitration of benzene	D.	Polymerization of ethylene
34.	(CH	₃)CMgCl on reaction with D ₂ O prod	duces	S
	A.	(CH ₃) ₃ CD	B.	(CH ₃) ₃ OD
	C.	(CD ₃) ₃ CD	D.	(CD ₃)OD
35.	The	correct order of ease of hydrolysis	of a	cid derivatives is
	Α.	Ester > amide > acid chloride		Amide > ester > acid chloride
	С.			
	0.	/ Inde > doid officiale > Later	Ο.	Acid chioride > ester > arriad
36.	Whi	ch of the following is the most stab	le ca	rbonium ion?
	A.	$C_6H_5^-C^+H$	B.	$CH_3=C^+H_2$
	C.	$(CH_3)_2C^{\dagger}H$	D.	$CH_3C^{\dagger}H_2$
37.	For	a reaction to be spontaneous at al	l, tem	peratures

B.

D.

 $\Delta G = \Delta H = 0$

 $\Delta H < \Delta G$

 ΔG and ΔH should be negative

C. ΔG and ΔH should be positive

A.

38.	The molecular velocity of any gas is proportional to the			
	A.	Absolute temperature		
	B.	Square of the absolute temperatu	re	
	C.	Square root of the absolute temper	eratu	re
	D.	None of these		
39.	Che	mical equilibrium is dynamic in nat	ure b	pecause
	A.	The equilibrium is maintained rapi	idly	
	B.	The concentration of reactants an	d pro	oducts become same at equilibrium
	C.	The concentration of reactants an	d pro	oducts are constant but different
	D.	Both the forward and reverse read	ction	occur at all times with same speed
40.	The	pH of a 0.001 M solution of hydrod	chlori	c acid is
	A.	1	B.	3
	C.	5	D.	10
41.	The	elements on the right side of the p	eriod	lic table are
	A.	Metals	B.	Metalloids
	C.	Non-metals	D.	Transition metals
42.	Whi	ch of the following molecule has a	dipol	e moment?
	A.	CO ₂	B.	BF ₃
	C.	CH ₄	D.	CHCl ₃
43.	For	a real gas, PV is a constant over a	sma	ll range of pressures, at
	A.	Boyle's temperature	B.	Critical temperature
	C.	Inversion temperature	D.	Ordinary temperature

44.		density of a 3M Na ₂ S ₂ O ₃ (Mw=158 ght of sodium thiosulphate	3) sol	ution is 1.25 gm ⁻¹ . Find the percent by
	A.	32.92%	B.	36.92%
	C.	37.92%	D.	42.92%
45.	The	heating of pyrites to remove sulph	ur is	known as
	A.	Bessemerisation	B.	Calcination
	C.	Roasting	D.	Smelting
46.	The	formation of bakelite results by the	e read	ction between
	A.	Urea and formaldehyde		
	B.	Phenol and formaldehyde		
	C.	Ethylene glycol and dimethyl tere	ohtha	ite
	D.	Tetra methylene glycol and hexar	nethy	rlene disisocyanate
47.	Prop	pene can be converted into 1-propo	onal k	ру
	A.	Hydration	B.	Hydroboration-oxidation
	C.	Reaction with alkaline KMnO ₄	D.	Reaction with dil. NaOH solution
48.	Whi	ch of the following ions give crimso	n col	our in the flame?
	A.	Ba ²⁺	B.	K ⁺
	C.	Ca ²⁺	D.	Sr ²⁺
49.	Forr	mic acid and acetic acid may be dis	stingu	uished by reaction with
	A.	Sodium	B.	Dilute acidic permanganate
	C.	2, 4 di nitrophenyl hydrazine	D.	Sodium ethoxide
50.	Whe	en a solid is converted into liquid, e	ntrop	ру
	A.	Becomes zero	B.	Decreases
	C.	Increases	D.	Remains the same

51.	In w	hich of the following arrangements	s, a n	netal would have least density?				
	A.	bcc						
	B.	сср						
	C.	hcp						
	D.	In all three arrangements, the de	nsity	would be same				
52.	In th	In the phenomenon of osmosis, the membrane allow passage of						
	A.	Solute only	B.	Solvent only				
	C.	Both solute and solvent	D.	None of these				
53.	If E	S_a of a reaction is zero. K is equal to	o (<i>A</i> i	s the frequency factor)				
	A.	Zero	B.	Infinity				
	C.	A^2	D.	A^{-1}				
54.		e physical states of the dispersing p ticide spray respectively, are	ohase	e and dispersion medium in colloid like				
	A.	Gas, liquid	B.	Solid, gas				
	C.	Liquid, solid	D.	Liquid, gas				
55.	ESF	R spectra are observed in		_ region				
	A.	Microwave	B.	Radiofrequency				
	C.	X–ray	D.	UV-Visible				
56.	Which of the following diatomic molecules will not give a rotational spectrum?							
	A.	N_2	B.	CO				
	C.	NO	D.	HF				
57.	The	e enthalpy change in a reaction doe	es no	t depend upon				
	A.	the state of reactions and produc	ts					
	B.	the nature of the reactants and pr	roduc	ets				
	C.	different intermediate steps in the	read	ction				
	D.							

58.	Abs	ence of an Sn axis denotes		
	A.	geometrical isomerism	B.	Optical activity
	C.	A trans isomer	D.	A tetrahedral point group
59.	The	HOMO in CO is		
	A.	π -bonding	B.	π -antibonding
	C.	σ -bonding	D.	σ -antibonding
60.	CeC	$ ho_2$ contain special variety of glass, $ ho_2$	which	n cuts off ultraviolet rays, is known as
	A.	crookes glass	B.	jena glass
	C.	flint glass	D.	pyrex glass
61.	Gre	en Chemistry aims to		
	A.	grows trees around chemical factor	ories	
	B.	reduce environmental degradation	า	
	C.	reduce costs of chemical process		
	D.	both B and C		
62.	Duri	ing Bhopal tragedy the gas release	d wa	S
	A.	potassium isothiocyanate	B.	m phosgene
	C.	methyl isocyanate	D.	ammonia
63.	Whi	ch of the following has the regular	tetral	nedral structure?
	A.	SF ₄	B.	BF ₄ -
	C.	XeF ₄	D.	$[Ni(CN)_4]^{2-}$
64.	The	spectrum of He is similar to		
	A.	Н	B.	Na
	C.	Li ⁺	D.	He ⁺

65.	Gold	ld dissolve in aquaregia and forms					
	A.	AuCl ₂	B.	AuCl ₃			
	C.	HAuCl ₄	D.	AuCl			
66.	. The highest boiling point is expected for						
	Α.	iso-Octane	B.	n-Octane			
	C.	2,2,3,3- tetra-Methyl butane	D.	n-Butane			
67.	67. The molarity of pure water at 4°C						
	Α.	1M	В.	5M			
		2.5M	D.	55.5M			
68.	Bras	ss is an alloy of					
	A.	Copper and Zinc	B.	Copper and Iron			
	C.	Iron and Zinc	D.	Tin and Copper			
69.	Whi	ch of the following has highest latti	ce en	nergy?			
	A.	KF	B.	CsF			
	C.	NaF	D.	RbF			
70.	lodii	ne is an example of					
70.	lodiı A.	ne is an example of Ionic Crystal	В.	Covalent crystal			
70.		·	В. D.	Covalent crystal Metallic crystal			
	A. C.	Ionic Crystal	D.	Metallic crystal			
	A. C.	Ionic Crystal Molecular Crystal	D.	Metallic crystal			
	A. C. The	Ionic Crystal Molecular Crystal potential for a hydrogen electrode	D. of pH	Metallic crystal			
71.	A. C. The A. C.	Ionic Crystal Molecular Crystal potential for a hydrogen electrode 0.00 V	D. of pH B. D.	Metallic crystal I = 10 is -0.591 -0.059V			
71.	A. C. The A. C.	Ionic Crystal Molecular Crystal potential for a hydrogen electrode 0.00 V 0.591	D. of pH B. D.	Metallic crystal H = 10 is -0.591 -0.059V			
71.	A. C. The A. C.	Ionic Crystal Molecular Crystal potential for a hydrogen electrode 0.00 V 0.591 number of vibrational degrees of f	D. of pl- B. D.	Metallic crystal $H = 10 \text{ is}$ -0.591 $-0.059V$ om in $C_6H_5CH_3$ will be			

73.	The percentages of a constituent A in a compound AB were found to be 48.32, 48.36, 48.23, 48.11 and 48.38 percent. What is the mean deviation in it?							
	40.0	0.09	. v vнк В.	1.9				
	Д. С.		D.					
	C.	0.9	D.	9				
74.	Mar	y free reactions are Inhibited by su	ıbsta	nces like				
	A.	Hydrogen peroxide	B.	Benzoyl peroxide				
	C.	Hydroquinone	D.	Finely divided metals				
75. In an S _N 2 reaction there is								
	A.	Partial racemization						
	B.	. Complete racemization						
	C.	Complete inversion						
	D.	A little inversion and mostly racen	nizati	on				
76.	U-23	35 may be separated from natural	urani	um by a process called				
	A.	Ionisation	B.	Electrolysis				
	C.	Precipitation	D.	Gaseous diffusion				
77. The catalyst used in lead chamber process of H ₂ SO ₄ manufacture is								
	A.	platinum	B.	oxides of nitrogen				
	C.	nickel	D.	vanadium compounds				
78.	8. Williamson's synthesis is used for the preparation of							
	A.	acid	B.	ester				
	C.	ether	D.	alcohol				
79.	The	pyramidine bases present in DNA	are					
	A.	Cytosine and adenine	B.	Cytosine and guanine				
	C.	Cytosine and thymine	D.	Cytosine and uracil				

	Α.	$\sigma - \sigma$	B.	$\sigma - p$			
	C.	p-p	D.	$\pi - \pi$			
81.	In a reversible isothermal process, the change in internal energy is						
	A.	zero	B.	positive			
	C.	negative	D.	none of these			
82.	For a first order reaction the plot of $log [A]t Vs t$ is linear with a						
	A.	. positive slope and zero intercept					
	B.	positive slope and non zero intercept					
	C.	C. negative slope and zero intercept					
	D.	negative slope and non zero inter-	cept				
83.	The	reaction of water with sodium and	pota	ssium is			
	A.	endothermic	B.	reversible			
	C.	exothermic	D.	irreversible and endothemic			
84.	In w	n which part of the atmosphere, ozone layer is present?					
	A.	Stratosphere	B.	Troposphere			
	C.	Mesosphere	D.	Thermosphere			
85.	The value of the ionic product of water depends on						
	A.	on volume of water					
	B.	on temperature					
	C.	changes by adding acid or alkali					
	D.	always remain constant					
86.	Buckminister fullerene is						
	A.	pure graphite	B.	C-60			
	C.	diamond	D.	C-90			

80. Hyperconjugation involves the overlap of the following orbitals

87. The major product obtained on interaction of phenol with sodium learning carbon dioxide is				of phenol with sodium hydroxide and		
	A.	benzoic acid	B.	salicylaldehyde		
	C.	salicylic acid	D.	phthalic acid		
88.	Whi	Vhich out of the following has the largest size?				
	A.	Mg^{2+}	B.	Na⁺		
	C.	$Rb^{\scriptscriptstyle{\dagger}}$	D.	Li ⁺		
89.	every 10°C rise in temperature. If the of reaction increases by					
	A.	20 times	B.	32 times		
	C.	64 times	D.	128 times		
90.	The	bond order of N ₂ ⁺ is				
	A.	1.5	B.	3.0		
	C.	2.5	D.	2.0		
91. How many unpaired electrons are there in cobaltocene molecule				cobaltocene molecule?		
	A.	0	B.	1		
	C.	2	D.	3		
92.	The	Claisen condensation is often use	preparing			
	A.	beta-hydroxyl ester	B.	alpha- hydroxyl ester		
	C.	gamma-keto ester	D.	beta-keto ester		
93.	Photoelectric effect is maximum in					
	A.	Cs	B.	Na		
	C.	K	D.	Li		

94.	Nitrobenzene on reduction with LiAIH ₄ in presence of ether forms						
	A.	aniline	B.	p-amino phenol			
	C.	azobenzene	D.	none of these			
95.	Нус	Irolysis of HCN gives					
	A.	pyruvic acid	B.	cinnamic acid			
	C.	oxalic acid	D.	formic acid			
96.	The name of the reaction which converts aldehydes into alkanes of same number of carbon atoms is called as						
	A.	Cannizzaro's reaction					
	B.	Clemmensen's reaction					
	C.	Aldol condensation					
	D.	Perkin's reaction					
97.	Alde	Aldehydes can be purified by forming a precipitate with					
	A.	NaHSO ₃	B.	Tollen's reagent			
	C.	Fehling solution	D.	Na ₂ CO ₃			
98.	The ratio of first Bohr's radius of hydrogen, He ⁺ and Li ²⁺ respectively is						
	A.	6:3:2	B.	2:3:6			
	C.	1:0.5:0.33	D.	Both A and C			
99.	The energy of hydrogen bonds of the order of						
	A.	140 KJ/mole	B.	4 KJ/mole			
	C.	400 KJ/mole	D.	40 KJ/mole			
100	. Lac	k of vitamin B₁ causes					
	A.	scurvy	B.	dermatitis			
	C.	beri beri	D.	lip inflammation			

ANSWER SHEET

1 A B C	D E 26	6 A B C D E	51 A B C D E	76 A B C D E
2 A B C	D E 27	7 A B C D E	52 A B C D E	77 A B C D E
3 A B C	D E 28	BABCDE	53 A B C D E	78 A B C D E
4 A B C	D E 29	9 A B C D E	54 A B C D E	79 A B C D E
5 A B C	D E 30	DABCDE	55 A B C D E	80 A B C D E
6 A B C	D E 3	1 A B C D E	56 A B C D E	81 A B C D E
7 A B C	D E 32	2 A B C D E	57 A B C D E	82 A B C D E
8 A B C	D E 33	3 A B C D E	58 A B C D E	83 A B C D E
9 A B C	D E 34	4 A B C D E	59 A B C D E	84 A B C D E
10 A B C	D E 35	A B C D E	60 A B C D E	85 A B C D E
11 A B C	D E 36	6 A B C D E	61 A B C D E	86 A B C D E
12 A B C	D E 37	7 A B C D E	62 A B C D E	87 A B C D E
13 A B C	D E 38	BABCDE	63 A B C D E	88 A B C D E
14 A B C	D E 39	A B C D E	64 A B C D E	89 A B C D E
15 A B C	D E 40	A B C D E	65 A B C D E	90 A B C D E
16 A B C	D E 4	1 A B C D E	66 A B C D E	91 A B C D E
17 A B C	D E 42	2 A B C D E	67 A B C D E	92 A B C D E
18 A B C	D E 43	BABCDE	68 A B C D E	93 A B C D E
19 A B C	D E 44	4 A B C D E	69 A B C D E	94 A B C D E
20 A B C	D E 45	A B C D E	70 A B C D E	95 A B C D E
21 A B C	D E 46	6 A B C D E	71 A B C D E	96 A B C D E
22 A B C	D E 47	7 A B C D E	72 A B C D E	97 A B C D E
23 A B C	D E 48	BABCDE	73 A B C D E	98 A B C D E
24 A B C	D E 49	9 A B C D E	74 A B C D E	99 A B C D E
25 A B C	D E 50	DABCDE	75 A B C D E	100 A B C D E

ROUGH WORK

ROUGH WORK

ROUGH WORK