```
Code No.

Entrance Examination for Admission to the P.G. Courses in the Teaching Departments, 2024

\section*{CSS}

\section*{CHEMISTRY/CHEMISTRY WITH SPECIALIZATION IN (RENEWABLE ENERGY/FUNCTIONAL MATERIALS)}

\section*{General Instructions}

1. The Question Paper is having 100 Objective Questions, each carrying one mark.
2. The answers are to be \((\checkmark)\) 'tick marked' only in the "Response Sheet" provided.
3. Negative marking : \(\mathbf{0 . 2 5}\) marks will be deducted for each wrong answer .

Time : 2 Hours
Max. Marks : 100

To be filled in by the Candidate
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l} 
Register \\
Number
\end{tabular} & in Figures & & & & & & & & \\
\cline { 2 - 10 } & in words & & & & & & & & \\
\hline
\end{tabular}

Choose appropriate answer from the options in the questions.
\[
\text { (100 } \times 1 \text { = } 100 \text { marks })
\]
1. Azeotropic mixture are
A. Constant temperature boiling mixture
B. Those which boils at different temperature
C. Mixture of two solids
D. None of the above

2. Which of the following is displaced by Fe ?
A. Ag
B. Zn
C. Na
D. All of the above
3. In NaCl crystal, each \(\mathrm{Cl}^{-}\)ion surrounded by
A. \(4 \mathrm{Na}^{+}\)ions
B. \(6 \mathrm{Na}^{+}\)ions
C. \(1 \mathrm{Na}^{+}\)ions
D. \(2 \mathrm{Na}^{+}\)ions
4. Boron nitride has the structure of the type
A. Graphite type
B. Diamond type
C. Both diamond and graphite type
D. NaCl type
5. White phosphorous is
A. A monatomic gas
B. P4, tetrahedral solid
C. P8, a crown
D. A linear diatomic molecule
6. The conditions for aromaticity is
A. Molecules must have clouds of delocalized \(\pi\)-electrons
B. Molecules must contain \((4 n+2) \pi\)-electrons
C. Both A and B
D. None of the above
7. Sucrose on hydrolysis
A. Glucose and maltose
B. Glucose and lactose
C. Glucose and fructose
D. Only glucose
8. A Zwitter ion is
A. Negatively charged ion without metal atom
B. Heavy ion with a small charge on it
C. An ion with positive and negative charge at different point on it
D. A positively charged ion without a metal ion
9. The safest and the most common alternative of sugar is
A. Glucose
B. Aspartame
C. Saccharin
D. Cyclodextrin
10. Which of the following is used for making artificial silk?
A. Adipic acid
B. Starch
C. Cellulose
D. Terepthalic acid
11. The number of optical isomers of \(\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}(\mathrm{OH}) \mathrm{CHO}\) is
A. 1
B. 2
C. 3
D. 4
12. End product of the hydrolysis of \(\mathrm{XeF}_{6}\) is
A. \(\mathrm{XeF}_{4} \mathrm{O}\)
B. \(\mathrm{XeF}_{2} \mathrm{O}_{2}\)
C. \(\mathrm{XeO}_{3}\)
D. \(\mathrm{XeO}_{6}\)
13. Identify the gas which is readily adsorbed by activated charcoal
A. \(\mathrm{H}_{2}\)
B. \(\mathrm{N}_{2}\)
C. \(\mathrm{O}_{2}\)
D. \(\mathrm{SO}_{2}\)
14. The rate constant for a chemical reaction has unit \(\mathrm{L} \mathrm{mol}{ }^{-1} \mathrm{~s}^{-1}\), order of the reaction will be
A. 0
B. 1
C. 2
D. 3
15. The electron affinity and ionization potential of iodine are 3.43 eV and 10.5 eV respectively. The electro negativity of iodine is
A. 3.48
B. 1.5
C. 2.0
D. 2.48
16. The ionic radii of \(A^{+}\)and \(B^{-}\)ions are \(0.98 \times 10^{-10} \mathrm{~m}\) and \(1.81 \times 10^{-10} \mathrm{~m}\). The coordination number of each ion is
A. 8
B. 4
C. 8 and 4
D. 6
17. The paramagnetic species is
A. \(\mathrm{BaO}_{2}\)
B. \(\mathrm{SiO}_{2}\)
C. \(\mathrm{TiO}_{2}\)
D. \(\mathrm{KO}_{2}\)
18. The polymeric species \((\mathrm{SN})_{\mathrm{X}}\) is a/an
A. Three Dimensional conductor
B. Two dimensional conductor
C. Insulator
D. One dimensional conductor
19. Which of the following lanthanoid does NOT show luminescence?
A. \(E u^{3+}\)
B. \(\mathrm{Lu}^{3+}\)
C. \(\mathrm{Tb}^{3+}\)
D. \(\mathrm{Pm}^{3+}\)
20. Nuclear particles which are presently thought to hold the nuceus together are
A. Protons
B. Neutrons
C. Electrons
D. Mesons
21. The property measured in Thermo Gravimetric Analysis
A. Change in weight
B. Rate of change in weight
C. Heat evolved or absorbed
D. Change in temperature
22. Number of naturally occurring actinides are
A. One
B. Two
C. Three
D. Four
23. The absorbance of solution having 20\% transmittance is
A. 0.301
B. 0.699
C. 1.301
D. 1.699
24. In the dichromate dianion
A. \(4 \mathrm{Cr}-\mathrm{O}\) bonds are equivalent
B. All \(\mathrm{Cr}-\mathrm{O}\) bonds are equivalent
C. \(6 \mathrm{Cr}-\mathrm{O}\) bonds are equivalent
D. All \(\mathrm{Cr}-\mathrm{O}\) bonds are not equivalent
25. On increasing the temperature, the conductivities of copper wire and \(\mathrm{CuSO}_{4}\) solution respectively
A. Increase, Decrease
B. Decrease, Increase
C. Increase, Increase
D. Decrease, Decrease
26. X-rays of wavelength 0.154 nm are diffracted from a crystal at angle of \(14.17^{\circ}\), Assuming that \(\mathrm{n}=1\), calculate the distance between layers in the crystal
A. \(\quad 0.3145 \mathrm{~nm}\)
B. \(\quad 3.145 \mathrm{~nm}\)
C. \(\quad 31.45 \mathrm{~nm}\)
D. \(\quad 314.5 \mathrm{~nm}\)
27. Which of the following method (s) use to generate free radicals?
A. Thermal cracking
B. Photolytic Bond hemolysis
C. Electron transfer
D. All of the above
28. The mildest reducing agent which reduces only carbonyl group in presence of nitro, carboxyl, double bond and ester group, is
A. \(\mathrm{LiAlH}_{4}\)
B. \(\mathrm{Na}-\mathrm{NH}_{3}\)
C. \(\mathrm{NaBH}_{4}\)
D. \(\mathrm{H}_{2}-\mathrm{Ni}\)
29. Which of the following oxide has the highest percentage in a usual sample of Portland cement?
A. \(\mathrm{SiO}_{2}\)
B. CaO
C. \(\mathrm{Al}_{2} \mathrm{O}_{3}\)
D. \(\mathrm{SO}_{2}\)
30. In \(\mathrm{Fe}_{2}(\mathrm{CO})_{9}\), the two iron atoms are
A. Linked only directly
B. Linked directly along with 3 CO molecules as bridging ligands
C. Linked only through 3 CO molecules as bridging ligands
D. Joined through one CO group as bridging ligands
31. The forces acting between noble gases are
A. Vander Waals force
B. Ion-dipole force
C. London-dispersion force
D. Magnetic force
32. The ozonolysis of a triple bond produces
A. A mixture of aldehyde/ketone and carboxylic acid
B. A mixture of aldehydes/ketones
C. A mixture of carboxylic acids
D. \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\)
33. Which of the following is an example of an electrophilic substitution?
A. Chlorination of methane
B. Dehydration of ethanol
C. Nitration of benzene
D. Polymerization of ethylene
34. \(\left(\mathrm{CH}_{3}\right) \mathrm{CMgCl}\) on reaction with \(\mathrm{D}_{2} \mathrm{O}\) produces
A. \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CD}\)
B. \(\left(\mathrm{CH}_{3}\right)_{3} \mathrm{OD}\)
C. \(\left(\mathrm{CD}_{3}\right)_{3} \mathrm{CD}\)
D. \(\left(C D_{3}\right) O D\)
35. The correct order of ease of hydrolysis of acid derivatives is
A. Ester \(>\) amide \(>\) acid chloride
B. Amide > ester \(>\) acid chloride
C. Amide > acid chloride > Ester
D. Acid chloride \(>\) ester \(>\) amide
36. Which of the following is the most stable carbonium ion?
A. \(\quad \mathrm{C}_{6} \mathrm{H}_{5}{ }^{-} \mathrm{C}^{+} \mathrm{H}\)
B. \(\mathrm{CH}_{3}=\mathrm{C}^{+} \mathrm{H}_{2}\)
C. \(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}^{+} \mathrm{H}\)
D. \(\mathrm{CH}_{3} \mathrm{C}^{+} \mathrm{H}_{2}\)
37. For a reaction to be spontaneous at all, temperatures
A. \(\Delta \mathrm{G}\) and \(\Delta \mathrm{H}\) should be negative
B. \(\Delta \mathrm{G}=\Delta \mathrm{H}=0\)
C. \(\Delta \mathrm{G}\) and \(\Delta \mathrm{H}\) should be positive
D. \(\Delta \mathrm{H}<\Delta \mathrm{G}\)
38. The molecular velocity of any gas is proportional to the
A. Absolute temperature
B. Square of the absolute temperature
C. Square root of the absolute temperature
D. None of these
39. Chemical equilibrium is dynamic in nature because
A. The equilibrium is maintained rapidly
B. The concentration of reactants and products become same at equilibrium
C. The concentration of reactants and products are constant but different
D. Both the forward and reverse reaction occur at all times with same speed
40. The pH of a 0.001 M solution of hydrochloric acid is
A. 1
B. 3
C. 5
D. 10
41. The elements on the right side of the periodic table are
A. Metals
B. Metalloids
C. Non-metals
D. Transition metals
42. Which of the following molecule has a dipole moment?
A. \(\mathrm{CO}_{2}\)
B. \(\mathrm{BF}_{3}\)
C. \(\mathrm{CH}_{4}\)
D. \(\mathrm{CHCl}_{3}\)
43. For a real gas, PV is a constant over a small range of pressures, at
A. Boyle's temperature
B. Critical temperature
C. Inversion temperature
D. Ordinary temperature
44. The density of a \(3 \mathrm{M} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{Mw}=158)\) solution is \(1.25 \mathrm{gm}^{-1}\). Find the percent by weight of sodium thiosulphate
A. \(32.92 \%\)
B. \(36.92 \%\)
C. \(37.92 \%\)
D. \(42.92 \%\)
45. The heating of pyrites to remove sulphur is known as
A. Bessemerisation
B. Calcination
C. Roasting
D. Smelting
46. The formation of bakelite results by the reaction between
A. Urea and formaldehyde
B. Phenol and formaldehyde
C. Ethylene glycol and dimethyl terephthate
D. Tetra methylene glycol and hexamethylene disisocyanate
47. Propene can be converted into 1-proponal by
A. Hydration
B. Hydroboration-oxidation
C. Reaction with alkaline \(\mathrm{KMnO}_{4}\)
D. Reaction with dil. NaOH solution
48. Which of the following ions give crimson colour in the flame?
A. \(\mathrm{Ba}^{2+}\)
B. \(\mathrm{K}^{+}\)
C. \(\mathrm{Ca}^{2+}\)
D. \(\mathrm{Sr}^{2+}\)
49. Formic acid and acetic acid may be distinguished by reaction with
A. Sodium
B. Dilute acidic permanganate
C. 2, 4 di nitrophenyl hydrazine
D. Sodium ethoxide
50. When a solid is converted into liquid, entropy
A. Becomes zero
B. Decreases
C. Increases
D. Remains the same
51. In which of the following arrangements, a metal would have least density?
A. bcc
B. \(\quad c \subset p\)
C. hcp
D. In all three arrangements, the density would be same
52. In the phenomenon of osmosis, the membrane allow passage of
A. Solute only
B. Solvent only
C. Both solute and solvent
D. None of these
53. If \(E_{a}\) of a reaction is zero. \(K\) is equal to ( \(A\) is the frequency factor)
A. Zero
B. Infinity
C. \(A^{2}\)
D. \(A^{-1}\)
54. The physical states of the dispersing phase and dispersion medium in colloid like pesticide spray respectively, are
A. Gas, liquid
B. Solid, gas
C. Liquid, solid
D. Liquid, gas
55. ESR spectra are observed in \(\qquad\) region
A. Microwave
B. Radiofrequency
C. X-ray
D. UV-Visible
56. Which of the following diatomic molecules will not give a rotational spectrum?
A. \(\mathrm{N}_{2}\)
B. CO
C. NO
D. HF
57. The enthalpy change in a reaction does not depend upon
A. the state of reactions and products
B. the nature of the reactants and products
C. different intermediate steps in the reaction
D. initial and final enthalpy of the reaction
58. Absence of an Sn axis denotes
A. geometrical isomerism
B. Optical activity
C. A trans isomer
D. A tetrahedral point group
59. The HOMO in CO is
A. \(\pi\)-bonding
B. \(\pi\)-antibonding
C. \(\sigma\)-bonding
D. \(\sigma\)-antibonding
60. \(\mathrm{CeO}_{2}\) contain special variety of glass, which cuts off ultraviolet rays, is known as
A. crookes glass
B. jena glass
C. flint glass
D. pyrex glass
61. Green Chemistry aims to
A. grows trees around chemical factories
B. reduce environmental degradation
C. reduce costs of chemical process
D. both \(B\) and \(C\)
62. During Bhopal tragedy the gas released was
A. potassium isothiocyanate
B. m phosgene
C. methyl isocyanate
D. ammonia
63. Which of the following has the regular tetrahedral structure?
A. \(\quad \mathrm{SF}_{4}\)
B. \(\mathrm{BF}_{4}^{-}\)
C. \(\mathrm{XeF}_{4}\)
D. \(\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}\)
64. The spectrum of He is similar to
A. H
B. Na
C. \(\mathrm{Li}^{+}\)
D. \(\mathrm{He}^{+}\)
65. Gold dissolve in aquaregia and forms
A. \(\mathrm{AuCl}_{2}\)
B. \(\mathrm{AuCl}_{3}\)
C. \(\mathrm{HAuCl}_{4}\)
D. AuCl
66. The highest boiling point is expected for
A. iso-Octane
B. n-Octane
C. 2,2,3,3- tetra-Methyl butane
D. n-Butane
67. The molarity of pure water at \(4^{\circ} \mathrm{C}\)
A. 1 M
B. 5 M
C. 2.5 M
D. 55.5 M
68. Brass is an alloy of
A. Copper and Zinc
B. Copper and Iron
C. Iron and Zinc
D. Tin and Copper
69. Which of the following has highest lattice energy?
A. KF
B. CsF
C. NaF
D. RbF
70. lodine is an example of
A. Ionic Crystal
B. Covalent crystal
C. Molecular Crystal
D. Metallic crystal
71. The potential for a hydrogen electrode of \(\mathrm{pH}=10\) is
A. \(\quad 0.00 \mathrm{~V}\)
B. -0.591
C. 0.591
D. -0.059 V
72. The number of vibrational degrees of freedom in \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}\) will be
A. 39
B. 15
C. 18
D. 40
73. The percentages of a constituent \(A\) in a compound \(A B\) were found to be 48.32 , \(48.36,48.23,48.11\) and 48.38 percent. What is the mean deviation in it?
A. 0.09
B. 1.9
C. 0.9
D. 9
74. Many free reactions are Inhibited by substances like
A. Hydrogen peroxide
B. Benzoyl peroxide
C. Hydroquinone
D. Finely divided metals
75. In an \(\mathrm{S}_{\mathrm{N}} 2\) reaction there is
A. Partial racemization
B. Complete racemization
C. Complete inversion
D. A little inversion and mostly racemization
76. U-235 may be separated from natural uranium by a process called
A. Ionisation
B. Electrolysis
C. Precipitation
D. Gaseous diffusion
77. The catalyst used in lead chamber process of \(\mathrm{H}_{2} \mathrm{SO}_{4}\) manufacture is
A. platinum
B. oxides of nitrogen
C. nickel
D. vanadium compounds
78. Williamson's synthesis is used for the preparation of
A. acid
B. ester
C. ether
D. alcohol
79. The pyramidine bases present in DNA are
A. Cytosine and adenine
B. Cytosine and guanine
C. Cytosine and thymine
D. Cytosine and uracil
80. Hyperconjugation involves the overlap of the following orbitals
A. \(\sigma-\sigma\)
B. \(\quad \sigma-p\)
C. \(p-p\)
D. \(\pi-\pi\)
81. In a reversible isothermal process, the change in internal energy is
A. zero
B. positive
C. negative
D. none of these
82. For a first order reaction the plot of \(\log [A] t \vee s t\) is linear with a
A. positive slope and zero intercept
B. positive slope and non zero intercept
C. negative slope and zero intercept
D. negative slope and non zero intercept
83. The reaction of water with sodium and potassium is
A. endothermic
B. reversible
C. exothermic
D. irreversible and endothemic
84. In which part of the atmosphere, ozone layer is present?
A. Stratosphere
B. Troposphere
C. Mesosphere
D. Thermosphere
85. The value of the ionic product of water depends on
A. on volume of water
B. on temperature
C. changes by adding acid or alkali
D. always remain constant
86. Buckminister fullerene is
A. pure graphite
B. C-60
C. diamond
D. \(\mathrm{C}-90\)
87. The major product obtained on interaction of phenol with sodium hydroxide and carbon dioxide is
A. benzoic acid
B. salicylaldehyde
C. salicylic acid
D. phthalic acid
88. Which out of the following has the largest size?
A. \(\mathrm{Mg}^{2+}\)
B. \(\mathrm{Na}^{+}\)
C. \(\mathrm{Rb}^{+}\)
D. \(\mathrm{Li}^{+}\)
89. The rate of a chemical reaction doubles for every \(10^{\circ} \mathrm{C}\) rise in temperature. If the temperature is increased by \(60^{\circ} \mathrm{C}\) the rate of reaction increases by
A. 20 times
B. 32 times
C. 64 times
D. 128 times
90. The bond order of \(\mathrm{N}_{2}{ }^{+}\)is
A. 1.5
B. 3.0
C. 2.5
D. 2.0
91. How many unpaired electrons are there in cobaltocene molecule?
A. 0
B. 1
C. 2
D. 3
92. The Claisen condensation is often used in preparing
A. beta-hydroxyl ester
B. alpha- hydroxyl ester
C. gamma-keto ester
D. beta-keto ester
93. Photoelectric effect is maximum in
A. Cs
B. Na
C. K
D. Li
94. Nitrobenzene on reduction with \(\mathrm{LiAlH}_{4}\) in presence of ether forms
A. aniline
B. p-amino phenol
C. azobenzene
D. none of these
95. Hydrolysis of HCN gives
A. pyruvic acid
B. cinnamic acid
C. oxalic acid
D. formic acid
96. The name of the reaction which converts aldehydes into alkanes of same number of carbon atoms is called as
A. Cannizzaro's reaction
B. Clemmensen's reaction
C. Aldol condensation
D. Perkin's reaction
97. Aldehydes can be purified by forming a precipitate with
A. \(\mathrm{NaHSO}_{3}\)
B. Tollen's reagent
C. Fehling solution
D. \(\mathrm{Na}_{2} \mathrm{CO}_{3}\)
98. The ratio of first Bohr's radius of hydrogen, \(\mathrm{He}^{+}\)and \(\mathrm{Li}^{2+}\) respectively is
A. 6:3:2
B. 2:3:6
C. 1:0.5:0.33
D. Both A and C
99. The energy of hydrogen bonds of the order of
A. \(140 \mathrm{KJ} / \mathrm{mole}\)
B. \(4 \mathrm{KJ} / \mathrm{mole}\)
C. \(400 \mathrm{KJ} / \mathrm{mole}\)
D. \(40 \mathrm{KJ} / \mathrm{mole}\)
100. Lack of vitamin \(B_{1}\) causes
A. scurvy
B. dermatitis
C. beri beri
D. lip inflammation

\section*{ANSWER SHEET}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & A & B & C & D & E & 26 & A & & B & C D & D & E & & A & A B & C & D & & & & 6 & A B & B & D & E \\
\hline 2 & A & B & C & D & E & 27 & A & A \({ }^{\text {a }}\) & B & C D & D & E & 52 & A & A B & C & D & & E & 77 & A & A B & B C & D & E \\
\hline 3 & A & B & C & D & E & 8 & A & A & B & C D & D & E & 53 & A & A B & C & D & & E & 78 & A & A B & B & D & E \\
\hline 4 & A & B & C & D & E & 9 & A & & B & C D & D & E & 4 & A & A B & C & D & D & E & & A & A B & B C & D & D \\
\hline 5 & A & B & C & D & E & A & A & & B & C D & D & E & 5 & A & A B & C & D & & E & & A & A B & B & D & E \\
\hline 6 & A & B & C & D & E & 31 & A & A & B \(C\) & C D & D & E & A & A & A B & C & D & D & E & 1 & A & A B & B & D & E \\
\hline 7 & A & B & C & D & E & 32 & A & A & B \(C\) & C D & D & E & & A & B & C & D & D & & & 2 & A B & B & D & E \\
\hline 8 & A & B & C & D & E & 3 & A & A & B & C D & D & E & & A & B & C & D & D & & & A & A B & B & D & E \\
\hline \[
9
\] & A & B & C & D & E & 34 & A & B & B & C D & D & E & & A & B & C & D & D & & & A & A B & B & D & E \\
\hline & A & B & C & D & E & 35 & A & & B \(C\) & C D & D & E & & A & A B & C & D & D & & & A & A B & C & D & E \\
\hline & A & B & C & D & E & 36 & A & B & B \(C\) & C D & D & E & & A & A B & C & D & & & & A & A B & B & D & D \\
\hline & A & B & C D & D & E & 37 & A & A & B & C D & D & E & 62 & A & A B & C & D & & & & A & A B & C & D & E \\
\hline & A & B & C & D & E & 38 & A & B & B \({ }^{\text {C }}\) & C D & D & E & 63 & A & A B & C & D & & & 88 & A & A B & B & D & E \\
\hline & A & B & C & D & E & 39 & A & B & B & C D & D & E & 64 & A & A B & C & D & D & E & 89 & A & A B & B & D & E \\
\hline & A & B & C & D & E & & A & B & \(B\) & C D & D & E & & A & A B & C & D & D & & 90 & A & A B & C & D & E \\
\hline & A & B & C & D & E & & A & B & B & C D & D & E & & A & A B & C & D & D & & & A & A B & B & D & E \\
\hline & A & B & C & D & E & & A & & B C & C D & D & E & & A & A B & C & D & - & & 92 & A & A B & C & D & E \\
\hline & A & B & C & D & E & & A & & B & C D & D & E & & A & A B & C & D & D & E & 93 & A & A B & C & D & E \\
\hline & A & B & C & D & E & & A & & B & C D & D & E & & A & A B & C & D & & E & & A & A B & C & D & E \\
\hline & A & B & C & D & E & & & & B C & C D & D & E & & A & A \(\mathrm{B}^{\prime}\) & C & D & & & 95 & & A B & B & D & E \\
\hline & A & B & C & D & E & 46 & & & B C & C D & D & E & & A & A B & C & D & & & 96 & A & A B & B & D & E \\
\hline & A & B & C & D & E & & A & B & B & C D & D & E & & A & A B & C & D & & & 97 & A & A B & B & D & E \\
\hline & A & B & C & D & E & & A & & B & C D & D & E & & A & A \(\mathrm{B}^{\prime}\) & C & D & & & 98 & A & A B & B & D & E \\
\hline & A & B & C & D & E & & A & B & B C & C D & D & E & & A & A B & C & D & & & 99 & A & A B & B C & D & E \\
\hline & A & B & C & D & E & & & & B C & C D & & E & & & A \({ }^{\text {B }}\) & C & D & & & & 0 & A B & C & D & E \\
\hline
\end{tabular}```

