Code No.

N-3580

Entrance Examination for Admission to the P.G. Courses in the Teaching Departments, 2022

CSS

PHYSICS (APPLIED ELECTRONICS/SPACE PHYSICS/ RENEWABLE ENERGY/NANO SCIENCE

General Instructions

1. The Question Paper is having two Parts - Part ' A ' Objective type (60\%) \& Part ' B ' Descriptive type (40\%).
2. Objective type questions which carry 1 mark each are to be (\checkmark) 'tick marked' in the response sheets against the appropriate answers provided.
3. 8 questions are to be answered out of 12 questions carrying 5 marks each in Part ' B '.
4. Negative marking : 0.25 marks will be deducted for each wrong answer in Part 'A'.

Time: 2 Hours
Max. Marks : 100
To be filled in by the Candidate

PART - A
(Objective Type)
Choose appropriate answer from the options in the questions. One mark each.
(60×1 = 60 marks)

1. Which of the statement is correct?

In photoelectric effect,
a) Photons are generated when electrons fall on a metal surface.
b) Photons are generated when electrons fall on a dielectric surface.
c) Electrons are generated when photons fall on a metal surface.
d) Electrons are generated when photons fall on a dielectric surface.

2. The energy of the photoelectron depends on
a) The velocity of the photon.
b) The frequency of the photon.
c) Both the velocity and frequency of the photon.
d) Intensity of the incident light.
3. Photoelectric effect can be explained only by
a) Wave nature of light
b) Particle nature of light
c) Both wave and particle nature of light
d) None of the above
4. If $h v$ is the energy of the incident photon, the energy of the photoelectron will be
a) Equal to $h v$
b) Greater than $h v$
c) Less than $h v$
d) Any of the above
5. Einstein's coefficients of absorption and stimulated emission. B_{12} and B_{21}, are related by
a) $B_{12}=B_{12}$
b) $B_{12}<B_{12}$
c) $B_{12}>B_{12}$
d) Any of the above
6. Which one of the following statements best describes stimulated emission in a laser?
a) Photons interact with atoms in a metastable state and cause electrons to be emitted
b) Photons interact with atoms in a metastable state and cause photons to be emitted
c) Atoms in a metastable state de-excite and cause electrons to be emitted
d) Electrons collide with atoms in a metastable state and cause photons to be emitted
7. Which characteristic of LASER allows it to be used in holography?
a) Monochrormaticity
b) Intensity
c) Directionality
d) Coherence
8. A light beam spreads out when it travels through a narrow slit. This is due to
a) Interference
b) Polarization
c) Diffraction
d) Reflection
9. If N1 and N 2 the populations of lower and upper levels respectively, and A21, B12 and B21 Einstein's coefficients, which of the following equations is correct in thermal equilibrium?
a) $\mathrm{A} 21 \mathrm{~N} 2=\mathrm{B} 12 \mathrm{~N} 1 \rho(\gamma)+\mathrm{B} 21 \mathrm{~N} 2 \rho(\gamma)$
b) $\mathrm{A} 21 \mathrm{~N} 2=\mathrm{B} 12 \mathrm{~N} 1 \rho(\gamma)-\mathrm{B} 21 \mathrm{~N} 2 \rho(\gamma)$
c) $\mathrm{B} 12 \mathrm{~N} 1 \rho(\gamma)-\mathrm{A} 21 \mathrm{~N} 2+\mathrm{B} 21 \mathrm{~N} 2 \rho(\gamma)$
d) B2IN2 $\rho(\gamma)=\mathrm{A} 21 \mathrm{~N} 2+\mathrm{B} 12 \mathrm{~N} 2 \rho(\gamma)$
10. Bohr quantum condition for a stable atom is
a) $L=n h$
b) $\mathrm{Ln}=\mathrm{h} / 2$
c) $L=n h / 2$
d) $L=2 \pi n / c$
11. The de Broglie wavelength of matter is given by the expression
a) $=\mathrm{hmv}$
b) $=h / m v$
c) $=\mathrm{h} / 2 \mathrm{mv}$
d) $=h / 2 \times m v$
12. When there are no external forces, the shape of a liquid drop is determined by
a) Surface Tension of the liquid
b) The density of the liquid
c) The viscosity of the liquid
d) The temperature of air only
13. If T is the surface tension of the soap solution, the amount of work done in blowing a soap bubble from diameter
D to a diameter 2Dis
a) $2 \pi D^{2} T$
b) $4 \pi D^{2} T$
c) $6 \pi D^{2} T$
d) $8 \pi D^{2} T$
14. If the surface of a liquid is plane, then the angle of contact of the liquid with the walls of the container is
a) Acute angle
b) Obtuse angle
c) 90°
d) 0°
15. Bernaulli's equation is applied to
a) Venturimeter
b) Orifice meter
c) Pitot tube meter
d) All the above
16. Which one of the following substances is not elastic?
a) Iron
b) Copper
c) Brass
d) Modelling clay
17. With rise in temperature, Young's modulus of elasticity,
a) Increases
b) Decreases
c) Remains constant
d) May increase or decrease.
18. The property of a body by which it tends to regain its original size and shape when the applied force is removed, is known as
a) Elasticity
b) Plasticity
c) Viscosity
d) Rigidity
19. For a harmonic oscillator, the zero-point energy is
a) $h v$
b) $2 h v$
c) $1 / 2 h v$
d) $2 \pi h v$
20. Which of the following is the energy operator?
a) $i \hbar \partial / \partial t$
b) $-i \hbar \partial / \partial t$
c) $-i \hbar \partial / \partial x$
d) $I \hbar v$
21. Hamiltonian I I is given by \qquad
a) $\mathrm{T}+\mathrm{V}$
b) $\quad \mathrm{T}-\mathrm{V}$
c) $\quad V-T$
d) $2 T+V$
22. Moment of inertia of a square of side b about an axis through its centre of gravity is
a) $b^{3} / 4$
b) $b^{4} / 12$
c) $b^{4} / 4$
d) $b^{4} / 8$
23. The moment of inertia of an area is
a) kg / m
b) $\mathrm{kg} / \mathrm{m}^{2}$
c) m^{4}
d) m^{3}
24. Moment of linear momentum is \qquad
a) $r \times m v$
b) $r \times m$
c) $r x v$
d) $r / m v$
25. In a simple harmonic oscillation represented by the equation $X=A \operatorname{Cos}(\omega t+\varphi), \omega$ represents
a) Displacement
b) Amplitude
c) Angular frequency
d) Phase
26. A simple harmonic oscillation which dies out after some time is called
a) Damped oscillation
b) Free oscillation
c) Undamped oscillation
d) Dependent oscillation
27. The amount of energy a wave carries corresponds with its
a) Crest
b) Amplitude
c) Wavelength
d) Period
28. The graph between volume and temperature in Charles' law is
a) an ellipse
b) a circle
c) a straight line
d) a parabola
29. When a uniform rod is heated, which of the following quantity of the rod will increase?
a) Mass
b) Weight
c) Center of mass
d) Moment of inertia
30. \qquad of thermodynamics is used to understand the concept of energy conservation.
a) Zeroth law
b) First law
c) Second law
d) None of the above
31. In which thermodynamic process is there no heat flow between the system and the surroundings?
a) Isothermal
b) Adiabatic
c) Isochoric
d) Isobaric
32. It is known that curves A, B, C are Isobaric. Isothermal, Adiabatic process then when one is correct

a) A - Adiabatic, B - Isothermal, C - Isobaric
b) A- Isothermal, B- Adiabatic, C - Isobaric
c) A - Isobaric, B - Isothermal, C - Adiabatic
d) None of these
33. Lagrangian L of a system is given by
a) $T+V$
b) $2 T+V$
c) $\mathrm{T}-\mathrm{V}$
d) $\mathrm{T}-2 \mathrm{~V}$
34. Lagrangian bracket is \qquad
a) Canonical invariant
b) Canonical variant
c) Non-invariant
d) None of these
35. Poisson's bracket is
a) Invariant under canonical transformation
b) Variant under canonical transformation
c) Both a \& b
d) None of these.
36. The Langrangian equation of motion are order differential equations.
a) First
b) Second
c) Third
d) Fourth
37. Canonical transformations are transformation of
a) Phase space
b) Minkowski space
c) Hilber space
d) None of these
38. A rod of proper length I_{0} moves with velocity v such that its length becomes $/ / 2$. What is the value of v ? (in terms of c, the velocity of light in vacuum).
a) c
b) $c \sqrt{2}$
c) $c / \sqrt{2}$
d) $\sqrt{2 / c}$
39. A body of rest mass m_{0} is travelling with a velocity 0.8 c What is its mass in motion?
a) $m_{0} / 0.6$
b) $\quad 0.6 \mathrm{~m}_{0}$
c) $m_{0} / 0.06$
d) $0.06 \mathrm{~m}_{0}$
40. The quantum analogue of the classical expression p (momentum) is
a) h / k
b) \hbar / k
c) hk
d) $\hbar \mathrm{k}$
41. The surface temperature of a star is determined using
a) Planck's law
b) Wien's law
c) Stefan's law
d) Kirchoff's law
42. Calculate the acceptance angle of fiber with a core index of 1.52 and a cladding index of 1.50
a) $24^{\circ} 14^{\prime}$
b) $\quad 14^{\circ} 14^{\prime}$
c) $18^{\circ} 14^{\prime}$
d) $28^{\circ} 14$
43. The basic principle of working of an optical fiber is
a) Diffraction
b) Interference
c) Total internal reflection
d) Refraction
44. Sine of the acceptance angle of the fibre is
a) Angle of incident
b) Angle of reflection
c) Numerical aperture
d) None of these
45. Calculate the numerical aperture of fiber with a core index of 1.52 and a cladding index of 1.50
a) 0.246
b) 0.346
c) 0.126
d) 0.175
46. Raman effect is due to change of \qquad of a molecule, during vibration.
a) Polarizability
b) Dipole moment
c) Molecular radius
d) Molecular weight
47. Two charges are placed at a certain distance. If the magnitude of each charge is doubled the force will become,
a) $1 / 4$ th of its original value
b) $1 / 8$ th of its original value
c) 4 times of its original value
d) 8 times of its original value
48. Two positive point charge are placed at the distance a apart have sum Q . What values of the charges, coulomb force between them is maximum?
a) $q_{1}=q_{1}=Q / 2$
b) $\quad q_{1}=3 Q / 4, q_{2}=Q / 4$
c) $q_{1}=5 Q / 6, q_{2}=Q / 6$
d) None of the above
49. The Boolean expression for $\bar{A} \bar{B}+\bar{A}+A B$ is equivalent to \longrightarrow.
a) A
b) \bar{A}
c) 1
d) 0
50. 8086 is a microprocessor.
a) 16 bit
b) 8 bit
c) 4 bit
d) 64 bit
51. Which of the following language is used in 8085 microprocessor?
a) Machine language
b) High level language
c) Low level language
d) Assembly language
52. The open loop gain of an operational amplifier is
a) Infinity
b) Zero
c) One
d) Any of the above.
53. Which of the following statement is correct in the case of a Common Emitter amplifier?
a) Both the base-collector and base-emitter junctions are reverse biased.
b) Both the base-collector and base-emitter junctions are forward biased.
c) The base-collector junction is reverse biased and base-emitter junction is forward biased.
d) The base-collector junction is forward biased and base-emitter junction is reverse biased.
54. A geostationary satellite revolves around the earth from
a) East to west
b) West to east
c) North to south
d) South to north.
55. Fermions are particles with spin $=$
a) 0
b) 1
c) $1 / 2$
d) $3 / 2$
56. Vectors which are in the same direction are called
a) Planar vectors
b) Coplanar vectors
c) Collinear vectors
d) Null vector
57. Null vectors are vectors \qquad
a) With zero magnitude
b) With infinite magnitude
c) With no direction
d) None of the above.
58. The curl of a vector $(x i+y j+z k)$ is \qquad
a) Zero
b) $i+j+k$
c) $-(i+j+k)$
d) $(i-j-k)$
59. Which of the statement is not correct?
a) The curl operator is operated on a scaler and the result is a vector
b) The curl operator is operated on a vector and the result is a vector
c) The gradient operator is operated on a scaler and the result is a vector
d) The divergence operator is operated on a vector and the result is a scaler
60. Which of the following vectors is not orthogonal to the vector (ai+bj)?
a) $(b \boldsymbol{i}+a \boldsymbol{j})$
b) $(b i-a j)$
c) $(-b \boldsymbol{i}+a \boldsymbol{j})$
d) None of the above

ANSWER SHEET - PART - A

1	A	B	C	D	E	21	A	B	C	D	E
2	A	B	C	D	E	22	A	B	C	D	E
3	A	B	C	D	E	23	A	B	C	D	E
4	A	B	C	D	E	24	A	B	C	D	E
5	A	B	C	D	E	25	A	B	C	D	E
6	A	B	C	D	E	26	A	B	C	D	E
7	A	B	C	D	E	27	A	B	C	D	E
8	A	B	C	D	E	28	A	B	C	D	E
9	A	B	C	D	E	29	A	B	C	D	E
10	A	B	C	D	E	30	A	B	C	D	E
11	A	B	C	D	E	31	A	B	C	D	E
12	A	B	C	D	E	32	A	B	C	D	E
13	A	B	C	D	E	33	A	B	C	D	E
14	A	B	C	D	E	34	A	B	C	D	E
15	A	B	C	D	E	35	A	B	C	D	E
16	A	B	C	D	E	36	A	B	C	D	E
17	A	B	C	D	E	37	A	B	C	D	E
18	A	B	C	D	E	38	A	B	C	D	E
19	A	B	C	D	E	39	A	B	C	D	E
20	A	B	C	D	E	40	A	B	C	D	E

PHYSICS

PART - B

(Descriptive Type)

Answer any eight questions.
($8 \times 5=40$ Marks)

1. Define Stress and Strain. Explain Different types of modulus of elasticity.
2. State and explain Newton's law of cooling.
3. Derive Time independent Schrodinger equation.
4. Deduce Kepler's laws of planetary motion.
5. Derive Poisson's and Laplace's equation.
6. Derive expression relativistic variation of mass. Explain why matter cannot travel with velocity more than c.
7. Explain different types of charge distributions, and obtain equations for electric field due to these charge distributions.
8. Explain Hall effect and derive expression for Hall constant.
9. Explain the postulates of vector atom model, and explain the different quantum numbers involved and their significance.
10. State and briefly explain first law of thermodynamics. Obtain equation for specific heat of gas and their relation.
11. Explain, with the help of a circuit diagram, the working of an astable multivibrator.
12. Explain the principle and construction of a hologram.
