Ent	Entrance Examination for Admission to the P.G. Courses in the Teaching Departments, 2022									
	CSS									
PHYSICS (APPLIED ELECTRONICS/SPACE PHYSICS/ RENEWABLE ENERGY/NANO SCIENCE										
				<u>Gener</u>	al Instru	<u>ctions</u>				
1.	The Desc	Question Pape riptive type (40	r is havi %).	ng two	Parts —	- Part 'A	' Object	tive type ((60%) &	Part 'B'
2.	Obje respo	ctive type ques	tions wh ainst the	nich carr appropr	ry 1 mar riate ans	k each a wers pro	are to b wided.	e (✔) 'tic	k marke	d' in the
3.	8 que	estions are to b	e answe	red out o	of 12 que	estions c	arrying	5 marks e	ach in P	art 'B'.
4.	<u>Nega</u> in Pa	ative marking rt 'A'.	: 0.2	5 marks	s will	be dedu	ucted f	or each	wrong	answer
Time	e : 2 H	lours						N	lax. Mar	ks : 100
To	be fille	ed in by the Car	ndidate							
Reg	ister	in Figures								
Nun	nber	in words								
					<u>.</u>					

PART – A

(Objective Type)

Choose appropriate answer from the options in the questions. **One** mark **each**.

 $(60 \times 1 = 60 \text{ marks})$

1. Which of the statement is correct?

In photoelectric effect,

- a) Photons are generated when electrons fall on a metal surface.
- b) Photons are generated when electrons fall on a dielectric surface.
- c) Electrons are generated when photons fall on a metal surface.
- d) Electrons are generated when photons fall on a dielectric surface.

2. The energy of the photoelectron depends on

- a) The velocity of the photon.
- b) The frequency of the photon.
- c) Both the velocity and frequency of the photon.
- d) Intensity of the incident light.

3. Photoelectric effect can be explained only by ————

- a) Wave nature of light
- b) Particle nature of light
- c) Both wave and particle nature of light
- d) None of the above

- 4. If *hv* is the energy of the incident photon, the energy of the photoelectron will be
 - a) Equal to *hv* b) Greater than *hv*
 - c) Less than *hv* d) Any of the above
- 5. Einstein's coefficients of absorption and stimulated emission. $B_{12}\ \text{and}\ B_{21},$ are related by
 - a) $B_{12}=B_{12}$ b) $B_{12}<B_{12}$
 - c) B₁₂>B₁₂ d) Any of the above
- 6. Which one of the following statements best describes stimulated emission in a laser?
 - a) Photons interact with atoms in a metastable state and cause electrons to be emitted
 - b) Photons interact with atoms in a metastable state and cause photons to be emitted
 - c) Atoms in a metastable state de-excite and cause electrons to be emitted
 - d) Electrons collide with atoms in a metastable state and cause photons to be emitted
- 7. Which characteristic of LASER allows it to be used in holography?
 - a) Monochrormaticity b) Intensity
 - c) Directionality d) Coherence
- 8. A light beam spreads out when it travels through a narrow slit. This is due to
 - a) Interference b) Polarization
 - c) Diffraction d) Reflection
- 9. If N1 and N2 the populations of lower and upper levels respectively, and A21, B12 and B21 Einstein's coefficients, which of the following equations is correct in thermal equilibrium?
 - a) A21N2 = B12N1 $\rho(\gamma)$ +B21N2 $\rho(\gamma)$
 - b) A21N2 = B12N1 $\rho(\gamma)$ B21N2 $\rho(\gamma)$
 - c) B12N1 $\rho(\gamma)$ A21N2 + B21N2 $\rho(\gamma)$
 - d) B2IN2 $\rho(\gamma)$ = A21N2+ B12N2 $\rho(\gamma)$

- 10. Bohr quantum condition for a stable atom is
 - a) L = nh b) Ln = h/2
 - c) L = nh/2 d) $L = 2\pi n/c$

11. The de Broglie wavelength of matter is given by the expression ————

- a) = hmv b) =h/mv
- c) = h/2mv d) = $h/2 \times mv$
- 12. When there are no external forces, the shape of a liquid drop is determined by
 - a) Surface Tension of the liquid b) The density of the liquid
 - c) The viscosity of the liquid d) The temperature of air only
- 13. If T is the surface tension of the soap solution, the amount of work done in blowing a soap bubble from diameter D to a diameter 2Dis ———.
 - a) $2\pi D^2 T$ b) $4\pi D^2 T$ c) $6\pi D^2 T$ d) $8\pi D^2 T$
- 14. If the surface of a liquid is plane, then the angle of contact of the liquid with the walls of the container is
 - a) Acute angle b) Obtuse angle
 - c) 90° d) 0°

15. Bernaulli's equation is applied to ———

- a) Venturimeter b) Orifice meter
- c) Pitot tube meter d) All the above
- 16. Which one of the following substances is not elastic?
 - a) Iron b) Copper
 - c) Brass d) Modelling clay
- 17. With rise in temperature, Young's modulus of elasticity, _____
 - a) Increases b) Decreases
 - c) Remains constant d) May increase or decrease.

18.	The whe	property of a body by which it to the applied force is removed, is	to regain its original size and shape n as	
	a)	Elasticity	b)	Plasticity
	c)	Viscosity	d)	Rigidity
19.	For	a harmonic oscillator, the zero-poi	nt ene	ergy is
	a)	hv	b)	2 hv
	c)	½ hv	d)	$2\pi hv$
20.	Whi	ch of the following is the energy op	erato	or?
	a)	iħ∂/∂t	b)	<i>− iħ∂ ∂t</i>
	c)	— <i>i</i> ħ∂ / ∂ x	d)	lħv
21.	Han	niltonian I-I is given by ————	—.	
	a)	T+V	b)	T-V
	c)	V-T	d)	2T+V
22.	Mor is —	ment of inertia of a square of side b	o abo	ut an axis through its centre of gravity
	a)	b ³ /4	b)	b ⁴ /12
	c)	b ⁴ /4	d)	b ⁴ /8
23.	The	moment of inertia of an area is		
	a)	kg/m	b)	kg/m ²
	c)	m ⁴	d)	m ³
24.	Mor	nent of linear momentum is ———		—.
	a)	r x mv	b)	r x m
	c)	rxv	d)	r/mv
25.	In X=	a simple harmonic oscilla $A \cos(\omega t + \varphi), \omega$ represents	tion	represented by the equation
	a)	Displacement	b)	Amplitude
	c)	Angular frequency	d)	Phase
26.	A s	simple harmonic oscillation whic	ch di	es out after some time is called
	a)	Damped oscillation	b)	Free oscillation
	c)	Undamped oscillation	d)	Dependent oscillation

27. The amount of energy a wave carries corresponds with its _____

- a) Crest b) Amplitude
- c) Wavelength d) Period

28. The graph between volume and temperature in Charles' law is ————

- a) an ellipse b) a circle
- c) a straight line d) a parabola
- 29. When a uniform rod is heated, which of the following quantity of the rod will increase?
 - a) Mass b) Weight
 - c) Center of mass d) Moment of inertia

30. ———— of thermodynamics is used to understand the concept of energy conservation.

- a) Zeroth law b) First law
- c) Second law d) None of the above
- 31. In which thermodynamic process is there no heat flow between the system and the surroundings?
 - a) Isothermal b) Adiabatic
 - c) Isochoric d) Isobaric
- 32. It is known that curves A, B, C are Isobaric. Isothermal, Adiabatic process then when one is correct

- a) A Adiabatic, B Isothermal, C Isobaric
- b) A- Isothermal, B- Adiabatic, C Isobaric
- c) A Isobaric, B Isothermal, C Adiabatic
- d) None of these

33.	Lag	rangian L of a system is given by –		
	a)	T+V	b)	2T+V
	c)	T-V	d)	T-2V
34.	Lag	rangian bracket is ————		
	a)	Canonical invariant	b)	Canonical variant
	c)	Non-invariant	d)	None of these
35.	Pois	son's bracket is ———		
	a)	Invariant under canonical transfor	matic	n
	b)	Variant under canonical transform	natior	1
	c)	Both a & b		
	d)	None of these.		
36.	The	Langrangian equation of motion a	re oro	ler differential equations.
	a)	First	b)	Second
	c)	Third	d)	Fourth
37.	Can	onical transformations are transfor	matic	on of
	a)	Phase space	b)	Minkowski space
	c)	Hilber space	d)	None of these
38.	A rc Wha	od of proper length I_0 moves with v at is the value of v ? (in terms of c, t	eloci he ve	ty <i>v</i> such that its length becomes <i>I/2.</i> elocity of light in vacuum).
	a)	С	b)	$c\sqrt{2}$
	c)	$c/\sqrt{2}$	d)	$\sqrt{2/c}$
39.	A b mot	ody of rest mass m_0 is travelling ion?	with	a velocity 0.8c What is its mass in
	a)	m ₀ /0.6	b)	0.6 m ₀
	c)	m ₀ /0.06	d)	0.06m ₀

40.	The	quantum analogue of the o	classi	cal expression p (momentum) is
	a)	h/k	b)	<i>ħ/</i> k
	c)	hk	d)	ħk
41.	The	surface temperature of a star is d	eterm	ined using ———
	a)	Planck's law	b)	Wien's law
	c)	Stefan's law	d)	Kirchoff's law
42.	Calo inde	culate the acceptance angle of fiberation of the second seco	er wit	h a core index of 1.52 and a cladding
	a)	24°14'	b)	14°14'
	c)	18°14'	d)	28°14
43.	The	basic principle of working of an or	otical	fiber is ———
	a)	Diffraction	b)	Interference
	c)	Total internal reflection	d)	Refraction
44.	Sine	e of the acceptance angle of the fit	ore is	<u> </u>
	a)	Angle of incident	b)	Angle of reflection
	c)	Numerical aperture	d)	None of these
45.	Calc inde	culate the numerical aperture of fib ex of 1.50	ber wi	th a core index of 1.52 and a cladding
	a)	0.246	b)	0.346
	c)	0.126	d)	0.175
46.	Ran	nan effect is due to change of ——		—— of a molecule, during vibration.
	a)	Polarizability	b)	Dipole moment
	c)	Molecular radius	d)	Molecular weight

N – 3580

	dou	bled the force will become,							
	a)	1/4th of its original value	b)	1/8th of its original value					
	c)	4 times of its original value	d)	8 times of its original value					
48.	Two positive point charge are placed at the distance a apart have sum Q. What values of the charges, coulomb force between them is maximum?								
	a)	q ₁ =q ₁ =Q/2	b)	q ₁ = 3 Q/4, q ₂ =Q/4					
	c)	q ₁ = 5 Q/6, q ₂ =Q/6	d)	None of the above					
49.	The	Boolean expression for $\overline{A} \ \overline{B} + \overline{A} +$	- AB	is equivalent to ———.					
	a)	A	b)	Ā					
	c)	1	d)	0					
50.	808	6 is a ———— microprocesso	or.						
	a)	16 bit	b)	8bit					
	c)	4bit	d)	64bit					
51.	Whi	ich of the following language is use	d in	8085 microprocessor?					
	a)	Machine language	b)	High level language					
	c)	Low level language	d)	Assembly language					
52.	The	open loop gain of an operational a	ampli	fier is					
	a)	Infinity	b)	Zero					
	c)	One	d)	Any of the above.					
53.	Whi amp	ich of the following statement is o plifier?	corre	ct in the case of a Common Emitter					
	a)	Both the base-collector and base	-emit	ter junctions are reverse biased.					
	b)	Both the base-collector and base	-emit	ter junctions are forward biased.					
	c)	The base-collector junction is re forward biased.	verse	e biased and base-emitter junction is					

47. Two charges are placed at a certain distance. If the magnitude of each charge is

d) The base-collector junction is forward biased and base-emitter junction is reverse biased.

9

54.	54. A geostationary satellite revolves around the earth from ————							
	a)	East to west	b)	West to east				
	c)	North to south	d)	South to north.				
55.	Fer	mions are particles with spin = —						
	a)	0	b)	1				
	c)	1/2	d)	3/2				
56.	Vec	tors which are in the same direction	on are	e called				
	a)	Planar vectors	b)	Coplanar vectors				
	c)	Collinear vectors	d)	Null vector				
57.	Nul	vectors are vectors ———						
	a)	With zero magnitude	b)	With infinite magnitude				
	c)	With no direction	d)	None of the above.				
58.	The	e curl of a vector $(xi + yj + zk)$ is —						
	a)	Zero	b)	i + j + k				
	c)	-(i+j+k)	d)	(i-j-k)				

- 59. Which of the statement is not correct?
 - a) The curl operator is operated on a scaler and the result is a vector
 - b) The curl operator is operated on a vector and the result is a vector
 - c) The gradient operator is operated on a scaler and the result is a vector
 - d) The divergence operator is operated on a vector and the result is a scaler
- 60. Which of the following vectors is not orthogonal to the vector (ai + bj)?
 - a) (*bi* + *aj*) b) (*bi aj*)
 - c) (-bi + aj) d) None of the above

N – 3580

1	А	В	С	D	Е
2	Α	В	С	D	Е
3	Α	В	С	D	Е
4	А	В	С	D	Е
5	А	В	С	D	Е
6	А	В	С	D	Е
7	А	В	С	D	Е
8	А	В	С	D	Е
9	А	В	С	D	Е
10	А	В	С	D	Е
11	Α	В	С	D	Е
12	А	В	С	D	Е
13	А	В	С	D	Е
14	А	В	С	D	Е
15	А	В	С	D	Е
16	А	В	С	D	Е
17	А	В	С	D	Е
18	А	В	С	D	Е
19	А	В	С	D	Е
20	А	В	С	D	Е

ANS	WEF	R S⊢	IEET		PAR	T – A
21	А	В	С	D	Е	2
22	А	В	С	D	Е	4
23	А	В	С	D	Е	2
24	Α	В	С	D	Е	
25	А	В	С	D	Е	
26	А	В	С	D	Е	
27	А	В	С	D	Е	
28	Α	В	С	D	Е	
29	Α	В	С	D	Е	
30	Α	В	С	D	Е	!
31	А	В	С	D	Е] :
32	А	В	С	D	Е	!
33	Α	В	С	D	Е] :
34	Α	В	С	D	Е] :
35	Α	В	С	D	Е	!
36	А	В	С	D	Е	4
37	А	В	С	D	Е	4
38	А	В	С	D	Е] 4
39	Α	В	С	D	Е] ;
40	Α	В	С	D	Е	

~					
41	А	В	С	D	Е
42	А	В	С	D	Е
43	Α	В	С	D	Е
44	А	В	С	D	Е
45	А	В	С	D	Е
46	А	В	С	D	Е
47	А	В	С	D	Е
48	А	В	С	D	Е
49	А	В	С	D	Е
50	А	В	С	D	Е
51	А	В	С	D	Е
52	А	В	С	D	Е
53	А	В	С	D	Е
54	А	В	С	D	Е
55	А	В	С	D	Е
56	А	В	С	D	Е
57	А	В	С	D	Е
58	А	В	С	D	Е
59	А	В	С	D	Е
60	А	В	С	D	Е

PHYSICS

PART – B

(Descriptive Type)

Answer **any eight** questions.

(8 × 5 = 40 Marks)

- 1. Define Stress and Strain. Explain Different types of modulus of elasticity.
- 2. State and explain Newton's law of cooling.
- 3. Derive Time independent Schrodinger equation.
- 4. Deduce Kepler's laws of planetary motion.
- 5. Derive Poisson's and Laplace's equation.
- 6. Derive expression relativistic variation of mass. Explain why matter cannot travel with velocity more than *c*.
- 7. Explain different types of charge distributions, and obtain equations for electric field due to these charge distributions.
- 8. Explain Hall effect and derive expression for Hall constant.
- 9. Explain the postulates of vector atom model, and explain the different quantum numbers involved and their significance.
- 10. State and briefly explain first law of thermodynamics. Obtain equation for specific heat of gas and their relation.
- 11. Explain, with the help of a circuit diagram, the working of an astable multivibrator.
- 12. Explain the principle and construction of a hologram.