Code No. $|\mathbf{L} - \mathbf{A}|$

L – 4029

Entrance Examination for Admission to the P.G. Courses in the Teaching Departments, 2021										
					CSS					
		С	HEMIS	TRY/R	ENEW	ABLE E	ENERG	Y		
				<u>Gener</u>	al Instru	<u>ctions</u>				
1.	. The Question Paper is having two Parts — Part 'A' Objective type (60%) & Part 'B' Descriptive type (40%).								Part 'B'	
2.	. Objective type questions which carry 1 mark each are to be (✓) 'tick marked' in the response sheets against the appropriate answers provided.								d' in the	
3.	8 que	estions are to b	e answe	red out o	of 12 que	estions c	arrying 5	5 marks e	each in P	art 'B'.
4.	 <u>Negative marking</u> : 0.25 marks will be deducted for each wrong answer in Part 'A'. 								answer	
Time	: 2 H	lours						Ν	lax. Mar	ks : 100
To be filled in by the Candidate										
Register		in Figures								
Num	ber	in words								

PART – A

(Objective Type)

Choose appropriate answer from the options in the questions. **One** mark **each**.

 $(60 \times 1 = 60 \text{ marks})$

- 1. The bond order and the order of bond enthalpy for O_2, O_2^- and $O_2^{2^-}$ is
 - a) 2,1.5,1; $O_2 > O_2^{-} > O_2^{2-}$ b) 1, 1.5,2; $O_2 < O_2^{-} < O_2^{2-}$
 - c) 1,2,1.5; $O_2 < O_2^{2-} < O_2^{-}$ d) 1,2,3; $O_2 > O_2^{-} > O_2^{2-}$

DONOTWRITEHERE

2. The number of α and β particles generated in the following radioactive decay process are,

- a) 1α and 1β b) 2β
- c) 1α and 2β d) 2α and 2β
- 3. Among the following which one is not an intermetallic compound
 - a) MgZn₂ b) Cu₃Au
 - c) *CuZn* d) SnAs

4.	The arrangement of cations in the Rock Salt structure is						
	a)	fcc	b)	hcp			
	c)	bcc	d)	сср			
5.	An	insulator is a semiconductor with					
	a)	Large band gap	b)	Low band gap			
	c)	Low Fermi level	d)	Positive holes			
6.	The	K_{b} of ammonia is 1.8×10^{-5} . The	K _a of	the conjugate acid NH_4^{+} is			
	a)	1.8×10 ⁻⁵	b)	1.0×10^{-14}			
	c)	5.56×10^{-10}	d)	1.0×10^{-7}			
7.	A st	trong acid has a pKa value					
	a)	pKa < 7 > 0	b)	pKa > 0			
	c)	рКа > 14	d)	рКа < 0			
8.	Wh	ich among the following is an oxoa	cid				
	a)	$[Fe(OH_2)_6]^{3+}$	b)	Te(OH) ₆			
	c)	H_2SO_4	d)	HCI			
9.	The	standard EMF of a Cu-Zn cell is					
	[Giv	ven: $E^{\Theta}(Zn^{2+}, Z_n) = -0.76V, E^{\Theta}(Cu)$	1 ²⁺ ,Cl	(u) = +0.34V]			
	a)	+1.10 V	b)	0 V			
	c)	– 0.42 V	d)	+1.0 V			
10.	<i>Mn</i> titra oxio	O_4^- , the permanganate ion is a tion of <i>Fe</i> ²⁺ . Which of the ions dise in an acidic solution?	com Fe²⁺	mon analytical reagent used for the ⁺ , <i>Cl</i> [−] and <i>Ce</i> ³⁺ can permanganate			

- b) Only Fe^{2+} and Cl^{-}
- a) Only Fe²⁺
 c) Only Ce³⁺ d) All three ions

11. Which of the following is a disproportionation reaction

a)
$$2Cu_{(aq)}^+ \rightarrow Cu_{(aq)}^{2+} + Cu_{(s)}$$

b)
$$4Fe_{(aq)}^{2+} + O_{2_{(g)}} + 4H_{(aq)}^{+} \rightarrow 4Fe_{(aq)}^{3+} + 2H_2O_{(I)}$$

c)
$$2Sc_{(s)} + 6H_{(aq)}^+ \rightarrow 2Sc_{(aq)}^{3+} + 3H_{2_{(g)}}$$

- d) $4\text{Co}_{(\text{ag})}^{3+} + 2\text{H}_2\text{O}_{(1)} \rightarrow 4\text{Co}_{(\text{ag})}^{2+} + \text{O}_{2_{(\alpha)}} + 4\text{H}_{(\text{ag})}^+$
- 12. The gas evolved when PbO_2 is treated with Conc. HNO_3 ?
 - NO₂ b) O_2 c) N_2 a) d) N_2O
- 13. The metal ion that can give an EPR signal is
 - Ni²⁺ Cu²⁺ a) Co⁺ b) Cu⁺ c) d)
- 14. Example for a polydentate ligand is
 - a) $NO_3^$ b) NO_2^- NCS⁻ d) SCN⁻ c)

15. The octahedral crystal field splitting (Δ_0) of d-orbital energies of the following metal ions decreases in the order

a) $Co^{2+} > Co^{3+} > Rh^{3+}$ b) $Rh^{3+} > Co^{3+} > Co^{2+}$ d) $Co^{3+} > Co^{2+} > Rh^{3+}$ c) $Rh^{3+} > Co^{2+} > Co^{3+}$

16. Identify the isoelectronic pairs

- a) NO and CO BH₃ and NH₃ b)
- BH₃ and CH₃⁺ O_2 and N_2 c) d)
- 17. The correct order of fundamental vibrational frequencies for the following diatomic molecules is
 - a) ${}^{1}H^{35}CI > {}^{1}H^{37}CI > {}^{2}D^{35}CI$ b)
 - c) ${}^{1}H^{37}CI > {}^{1}H^{35}CI > {}^{2}D^{35}CI$
- $^{2}D^{35}CI > ^{1}H^{37}CI > ^{1}H^{35}CI$
- d) ${}^{1}H^{37}CI > {}^{2}D^{35}CI > {}^{1}H^{37}CI$

- 18. Low spin Iron (III) centre is found in
 - a) deoxy form of haemoglobin
 - c) Haemocyanin d) Carbonic anhydrase
- 19. The rodenticide action of Zn_3P_2 is due to the formation of
 - a) $Zn(OH)_2$ b) PH_3 c) $ZnCO_3$ d) P_4
- 20. Which among the following is an indicator used in complexometric titrations
 - a) Methyl Orange b) Phenolphthalein
 - c) Murexide d) Methylene Blue
- 21. When a dry hydrogen halide (HX) was dissolved in an alcohol [ROH] the solution conducted electricity and an alkyl halide is formed. The order of reactivity for different ROH towards the given HX was 3°>2°>1°<CH₃. The reaction could be

b)

oxy form of haemoglobin

- a) S_N^{1} b) S_N^{2}
- c) S_NAr d) S_{F²}
- 22. In the following reaction choose the product that can he formed with a 2nd order rate constant.

- 23. The correct order of solubility of following alcohols in water is,
 - a) $CH_3OH > CH_3CH_2OH > CH_3(CH_2)_3OH < CH_3(CH_2)_7OH$
 - b) $CH_3OH > CH_3CH_2OH > CH_3(CH_2)_3OH > CH_3(CH_2)_7OH$
 - c) $CH_3CH_2OH > CH_3OH > CH_3(CH_2)_7OH > CH_3(CH_2)_3OH$
 - d) $CH_3(CH_2)_7OH > CH_3(CH_2)_3OH > CH_3CH_2OH > CH_3OH$

- 24. The suitable reagent for the preparation of a *cis*-alkene from an alkyne is
 - a) $NH_2NH_2.H_2O$ b) $Na,Liq.NH_3$
 - c) H₂, Lindlar's Catalyst d) NaBH₄
- 25. In the base catalysed elimination of HCl from neomenthyl chloride two products A and B are formed, whereas, methyl chloride under the same conditions gave only one product.

Έl

Neomenthyl chloride

Menthyl chloride

The products A and B are,

26. The reactive species involved in the following reaction is

27. Choose the molecule that is non-aromatic

28. The number of signals/peaks in the ¹HNMR spectrum of 1,3- dichloropropane is

a)	One	b)	Two
c)	Three	d)	Four

29. In Phenylacetylene the methane proton resonance at δ

a)	6.5 ppm	b)	1.7 ppm
c)	4.5 ppm	d)	9.0 ppm

30. The picrate of an aromatic hydrocarbon is

- a) an ester b) a salt
- c) a charge transfer complex d) a coordination complex
- 31. A positive Hoffmann's isocyanide test can be obtained for
 - a) CH_3CH_2OH b) $CH_3CH_2NH_2$
 - c) CH_3NHCH_3 d) CH_3OCH_3
- 32. The Tollen's test will not be positive for
 - a) Glucose b) Benzaldehyde
 - c) Phenylacetylene d) Diphenylacetylene

33. The major product formed in the following reaction is

?

- 34. The complementary DNA sequence for 5'-G-A-A-T-T-C-3' is
 - a) 5'-C-T-T-A-AG-3' b) 5'C-U-U-A-A-G-3'
 - c) 3'-C-T-T-A-A-G-5' d) 3'-G-A-A-T-T-C-5'
- 35. The amino acid with 'R' configuration is
 - a) L-leucine b) L-alanine
 - c) L-valine d) L-cysteine
- 36. 100% racemic diads are found in
 - a) Atactic polymers b) Syndiotactic polymers
 - c) Isotactic polymers d) Elastic polymers

37. The reactions involved in the following transformations are

- a) Henry reaction followed by Nef reaction
- b) Nef reaction followed by Perkin reaction
- c) Michael reaction followed by Perkin reaction
- d) Perkin reaction followed by Schmidt reaction
- 38. Which one among the following reactions can give a benzoic acid derivative

39. Choose the chiral and dissymmetric molecule

40. Which among the following is a tropane alkaloid

41.	A gas at constant tem atm. The same gas w the resulting volume o	perature occupie as subjected to f the gas.	es a a pro	volume of 0.2 essure change	L at to 0	a pressure of 0.64 .80 atm. Calculate
	a) 0.20L b)	0.32L	c)	0.08L	d)	0.16L
42.	Choose an appropria involving a gas. a) Glass cylinder c) Thermos Flask	te vessel from	the b) d)	given set for A bamboo cyl Copper vesse	an is inder sl	othermal process
43.	 Choose the exothermi a) Combustion of LF b) Splitting of water c) Dehydrogenation d) Conversion of grader 	c process from th PG into hydrogen ar of ethane to eth aphite to Diamon	he fo nd ox ane d	llowing xygen		
44.	Which among the fo aqueous solution?	llowing can give	e the	e lowest freez	ing	point for its 0.1M
	a) $R_2 = 0_4$ b)	Naci	C)	Ulea	u)	Glucose
45.	Which among the Follo	owing is an inten	sive	property?		
	a) Mass b)	Volume	c)	Enthalpy	d)	Pressure
46.	Refrigeration technolo a) Faraday Effect c) Gibbs - Thomson	gy uses, Effect	b) d)	Joule - Thoms Jahn - Teller I	son E Effec	Effect t
47.	A regular solution is or	ne with				
	a) H ^E = 0 b)	$H^E = S^E$	c)	S ^E ≠ 0	d)	H ^E ≠ 0
48.	For a linear molecule modes is	having N atom	ıs, th	e number of i	ndep	endent vibrational
	a) 3N-6 b)	3N-5	c)	3N	d)	3N+6
49.	Choose the right state a) A bonding σ orbit b) A bonding σ orbit c) An antibonding σ	ment tal has even par tal has odd parit orbital has even	ity y n pai	ity		

- 50. In the ESR spectrum a hyperfine interaction between an electron and a spin $\frac{1}{2}$ nucleus can give,
 - a) one line
 - b) two lines of equal intensity
 - c) three lines with intensity ratios 1:2:1
 - d) four lines with intensity ratios 1:2:2:1
- 51. $t_{\frac{1}{2}}$ for a second order conversion of A to p is,
 - a) $\frac{[A]_0}{2k}$ b) $\frac{\ln 2}{k}$ c) $\frac{\ln k}{[A]_0}$ d) $\frac{1}{k[A]_0}$
- 52. From the given reaction coordinate diagram identify the rate determining step

53. The following reaction describes burning of hydrogen gas in air

 $O_2(g) + 2H_2(g) \rightarrow 2H_2O_{(g,l)}$ The reaction is

- a) Not spontaneous as there are less number of molecules after the reaction $(\Delta S < 0)$
- b) Spontaneous as there are less number of molecules after the reaction $(\Delta S > 0)$
- c) Spontaneous as there is a 'pop' sound during the reaction and $\Delta S_{surr} >> 0$
- d) Non spontaneous and $\Delta S_{tot} = 0$

- 54. The pH of a 0.01 mol dm⁻³ nitric acid solution and 0.01 mol dm⁻³ sufuric acid solution is,
 - a) 2 b) 2 and 1.68
 - c) 1.68 d) 1.68 and 2
- 55. In an electrodeposition of metals from their molten salts Consuming identical quantities of current the highest amount of metal deposited will be for
 - a) Ti b) Al c) Na d) Mg

56. The effect on EMF of the cell $Zn | Zn^{2+} | | Cu^{2+} | Cu$ upon doubling the concentration of Zn^{2+} and Cu^{2+} is

- a) EMF reduce to half b) EMF double
- c) EMF drop to zero d) EMF remain the same
- 57. For a molecule to show phosphorescence, it should have,
 - a) high fluorescence quantum yield
 - b) an enhanced rate of intersystem crossing
 - c) higher rate of internal conversion
 - d) low molar extinction coefficient
- 58. The absorbance of a solution is 1. It will absorb% of the radiation.
 - a) 100 b) 10 c) 90 d) 50

59. The orbital with two angular nodes and one radial node is,

- a) 2p b) 3d c) 1s d) 4d
- 60. Maximum number of phases that can coexist in equilibrium for a one-component system is
 - a) 1 b) 2 c) 3 d) 4

ANSWER SHEET — PART – A

21	А	В	С	D	Е
22	А	В	С	D	Е
23	А	В	С	D	Е
24	А	В	С	D	Е
25	А	В	С	D	Е
26	А	В	С	D	Е
27	А	В	С	D	Е
28	А	В	С	D	Е
29	А	В	С	D	Е
30	А	В	С	D	Е
31	А	В	С	D	Е
32	А	В	С	D	Е
33	А	В	С	D	Е
34	А	В	С	D	Е
35	А	В	С	D	Е
36	А	В	С	D	Е
37	А	В	С	D	Е
38	А	В	С	D	Е
39	А	В	С	D	Е
40	А	В	С	D	Е

CHEMISTRY/RENEWABLE ENERGY

PART – B

(Descriptive Type)

Answer **any eight** questions.

 $(8 \times 5 = 40 \text{ Marks})$

- 1. (a) Write a note on reactivity of Lanthanides.
 - (b) Explain why separation of lanthanides difficult.
- 2. (a) Explain HSAB principle.
 - (b) Comment on the acidity of VO, V_2O_3, V_2O_5 .
- 3. (a) Draw all possible geometrical isomers for $[Co(H_2O)_2(ox)BrCl]$ where $ox = -OOC COO^-$.
 - (b) Discuss about optical isomerism in coordination compounds using suitable examples.
- 4. (a) Give the structure and describe function of haemoglobin.
 - (b) Explain sodium potassium pump
- 5. Explain the mechanism
 - (a) Wagner Meerwein rearrangement and
 - (b) Reimer-Tiemann reaction using suitable examples .

- 6. Malonic acid $(A, C_3H_4O_3)$, a dibasic acid on reaction with $B(CH_4N_2O)$ in the presence of $POCI_3$ formed a cyclic compound $C(C_4H_4N_2O_3)$. C readily condensed with benzaldehyde giving D, which on CrO_3 oxidation gave compound of $E(C_4H_2N_2O_4)$ a starting material for the preparation of an important Dye and indicator Murexide. Compound B has two amino groups but failed to give the test for amines and C is a strong acid with pKa = 4.01. Identify compounds, B,C,D and E. Suggest a reason for the strong acid nature of compound C.
- 7. An unknown compound with molecular formula $C_4H_{10}O$ was analysed by FTIR and ¹HNMR. FTIR spectra gave a broad peak in the range 3500–3200 cm⁻¹ and peaks of medium and strong intensities at 2850 cm⁻¹ and 1320 cm⁻¹. 1H NMR spectra showed peaks with δ values at 0.95 ppm (doublet, 6H), 1.75 ppm (nonet, 1H), 24 ppm (triplet, 1H) and 3.4 ppm (doublet of doublet, 2H). identify the structure of the compound.
- 8. (a) How will you distinguish between pentan-2-one and pentan-3-one by mass spectroscopy?
 - (b) Give one synthetic application each for Organolithium and lithium organocuprate reagents.
- 9. A flask containing 6.4 g of methane gas is kept at a temperature of 0°C. Calculate the pressure exerted by the gas using ideal gas equation and Van der Waals equation. Van der Waals constants *a* and *b* for methane are 2.3026 dm⁶bar mol⁻² and 0.043067 dm³ mol⁻¹ respectively. The experimentally observed pressure is 3.11 bar. Explain why there are variations between the calculated and experimental values.
- 10 Carbonic acid is expected to be a diprotic acid with two Ka values $(4.3 \times 10^7 \text{ and } 5.6 \times 10^{-11})$. But in practice it is classified as a monoprotic acid. Explain why?
- 11. Define Partition Function. Derive an expression for the partition function for a rigid rotor taking HCl as an example.
- 12. Discuss about Lindemann-Hinshelwood mechanism.