							(Code No.	L -	- 4033	
	Entrance Examination for Admission to the P.G. Courses in the Teaching Departments, 2021										
	CSS										
DATA SCIENCE											
				<u>Gener</u>	al Instru	<u>ctions</u>					
1.	The Desc	Question Pape riptive type (40	r is havi %).	ing two	Parts —	Part 'A'	' Objecti	ve type (6	60%) 8	⊾Part 'B'	
2.	Obje respo	ctive type ques	ations wh	nich carr appropr	ry 1 mar riate ans	k each a wers pro	are to be vided.	e (✔) 'tick	marke	ed' in the	
3.	8 que	estions are to b	e answe	red out o	of 12 que	estions c	arrying 5	i marks ea	ach in F	Part 'B'.	
4.	<u>Nega</u> in Pa	ative marking rt 'A'.	: 0.2	5 marks	s will I	be dedu	ucted fo	or each	wrong	answer	
Time	9:2⊦	lours						Ма	ax. Mai	rks : 100	
Tok	oe fille	ed in by the Car	ndidate								
Reg	ister	in Figures									
Num	nber	in words									
						_	L				

PART – A

(Objective Type)

Choose appropriate answer from the options in the questions. **One** mark **each**.

(60 × 1 = 60)

- Let *a*, *b*, *c* be in A.P., then $\frac{a}{bc}$, $\frac{1}{c}$, $\frac{1}{b}$ are 1.
 - in G.P. in A.P. b) a)
 - in H.P. None of these c) d)

DONOTWRITEHERE

2. The harmonic mean of two numbers is 4 and the arithmetic and geometric mean satisfy the relation $2A + G^2 = 27$, the numbers are a) 6, 3 b) 5, 4 c) 5, -2.5 d) -3, 1

- 3. If *a*, *b*, *c* are in A.P. as well as in G.P., then
 - a) $a = b \neq c$ c) $a \neq b \neq c$ b) $a \neq b = c$ d) a = b = c
- 4. If product of three consecutive terms of a G.P. is 216 and the sum of the products *of* them in pairs is 156. Find the number is
 - a) 2, 6, 18 b) 3, 6, 12 c) 6, 12, 24 d) 6, 18, 9

5.	. If a, b, c are in A.P. and a^2, b^2, c^2 are in H.P. then						
	a) $a = b = c$	b)	a / 2, b, c are in H.P				
	c) <i>a</i> / 2, <i>b</i> , <i>c</i> are in A.P.	d)	None of these				
6.	If sum of three terms which are in A.P	. is 18	8, then the common difference is				
	a) 3	b)	6				
	c) 5	d)	cannot be determined				
	$\begin{bmatrix} 1 & a & b + c \end{bmatrix}$						
7	The value of $1 + c + a$ is						
1.	$\begin{vmatrix} 1 & c & a + b \end{vmatrix}$						
	a) $a+b+c$	b)	0				
	c) 1	d)	abc				
		,					
8.	For any square matrix A , $A + A^{T}$ will be	e					
	a) the identity matrix	b)	a diagonal matrix				
	c) a symmetric matrix	d)	a skew-symmetric matrix				
9.	If A is an invertible matrix then $(A^{\tau})^{-1}$	=					
	a) $(A^{-1})^{T}$	b)	A^{τ}				
	c) <i>A</i> ⁻¹	d)	None of the above				
10	The multiplicative inverse of the matri	x [3	4] is				
10.		<u>2</u>	3				
	a) $\begin{bmatrix} -3 & -4 \end{bmatrix}$	b)	3 - 4				
	$\lfloor -2 -3 \rfloor$	0)	└ −2 3 ┘				
			$\begin{bmatrix} 1 & 1 \end{bmatrix}$				
	C) $\begin{vmatrix} -3 & 4 \\ 2 & 3 \end{vmatrix}$	d)					
			$\begin{bmatrix} \frac{1}{2} & \frac{1}{3} \end{bmatrix}$				

11.	lf P a)	is an invertible <i>A = B</i>	matri b)	x and <i>A</i> = <i>A</i> = <i>B</i>	<i>PBP</i> ⁻¹, v c)	which of th $A = B^{\tau}$	ne foll	owin d)	g is ⁻ A =	true? = <i>B</i> ⁻¹	
12.	Let (<i>A</i> + a) c)	A and B $(B)^2 = A^2 + 2A^2$ AB = I AB = BA	be \ <i>B</i> + <i>E</i>	two s B² if and o	quare r nly if b) d)	matrices <i>BA = I</i> None of t	of these	sam	ie	order.	Then
13.	lf A a) c)	$= \begin{bmatrix} x & y & z \end{bmatrix}, \text{ th}$ $A^T A \text{ is a } 3 \times 3$ $A^T A \text{ is a } 3 \times 1$	en 3 mat I mati	rix rix	b) d)	AA^{T} is a AA^{T} is a	3×3 3×1	3 ma [.] I mat	trix rix		
14.	Find	the value of d	eterm	inant a – x – p –	b b-c y y-z q q-r	$\begin{bmatrix} c - a \\ z - x \\ r - p \end{bmatrix}$					
	a) c)	$\begin{pmatrix} 0 \\ (a-b) (y-z) \end{pmatrix}$) (r –	<i>p</i>)	b) d)	1 None of t	the al	bove			
15.	The a) c)	equations <i>x</i> + a unique solut infinitely many	y = 2 ion v solu	2 and 2 <i>x</i> + tions	- 2 <i>y</i> = 3 b) d)	have finitely m no solutio	any s on	soluti	ons		
16.	lf <i>a</i> a a) c)	and b are natur $a^2 - b^2 = 0$ $a^2 - b^2 = a +$	al nu	mbers suc	h that, <i>a</i> ² b) d)	² – b ² is a a ² – b ² = a ² – b ² =	prim = 1 = <i>a</i> –	e nur <i>b</i>	nbei	r then	
17.	The find	GCD and LCM the numbers.	l of t\	wo numbe	rs are 4 a	and 48 res	specti	vely.	If th	ieir sum	n is 28,
18.	a) If foo	r < z < q is $q(f(x))$. aiv	ven f	(z, 10) $(x) = \sin x$	and $a(x)$	10, 24 x^2 . wh	at is 1	u) foa?	4, 4	łÓ	
	a)	$\sin x^2$	b)	$(\sin x)^2$	c)	$x^2 \sin x$		d)	(sir	ו x ²)²	

4

- 19. Which of the following is an even function?
 - a) $f(x) = x^3$ b) $f(x) = \sin x$ c) f(x) = |x|d) f(x) = ax + b

20. Which of the following is an injuctive function R?

- a) $f(x) = x^3$ b) $f(x) = \sin x$
- c) f(x) = |x| d) f(x) = ax + b
- 21. Which of the following statement is true?
 - a) Every relation is a function b) Every function is a relation
 - c) Both the above d) None of the above

22. Find the inverse of
$$f(x) = \frac{x}{1-2x}$$

a) $g(y) = \frac{1-2y}{y}$ b) $g(y) = \frac{1+2y}{y}$ c) $g(y) = \frac{y}{1-2y}$ d) $g(y) = \frac{y}{1+2y}$

23. The range of the function $f(x) = \sqrt{x}$ defined on *R* is a) R b) R⁺ c) C d) N

- None of these
- 24. Which of the following statement about the functions is true?
 - a) A function is injuctive, if it is bijective
 - b) A function is injective, if it is surjective
 - c) A function is bijective, if it is surjective
 - d) A function is surjective, if it is injective

25. If
$$f(x) = x^2 + 1$$
, find $f^{-1}(17)$
a) 4 b) $\sqrt{18}$ c) {3,-3} d) {4,-4}

26. Evaluate
$$\lim_{x\to 2} \frac{x^2 - 4}{x - 2}$$

a) 4 b) 0
c) infinity d) cannot be determined
27. $\lim_{x\to 0} \frac{\sin x}{x} =$
a) 0 b) 1
c) infinity d) cos x
28. If f and g are continuous then
a) f + g is continuous then
a) f + g is continuous d) f - g is continuous
c) f.g is continuous d) all of the above
29. If f is continuous then
a) f is integrable b) f is differentiable
c) both (a) and (b) d) None of the above
30. Which of the following is a bijection?
a) $f(x) = x^2$ b) $f(x) = \sin x$
c) $f(x) = x$ d) $f(x) = c$, where c is a constant
31. If $x^3 + y^3 = 3xy$, then $\frac{dy}{dx} =$
a) $\frac{x - y^2}{x^2 - y}$ b) $\frac{x - y^2}{y - x^2}$
c) $\frac{x^2 - y}{x - y^2}$ d) $\frac{x^2 - y}{y^2 - x}$

- 32. Derivative of e^{-x} is
 - a) e^{-x} b) e^{x} c) $-e^{-x}$ d) $-e^{x}$

33.	The	n th derivative of	of e ^{ax}	is				
	a)	e ^{ax}	b)	a ⁿ e ^{ax}	c)	ae ^{nx}	d)	ne ^{ax}
34.	lf x	is real, the ma	ximu	m value of 5 +	4 <i>x</i> –	$4x^{2}$ is		
	a)	1	b)	2	c)	5	d)	6
35.	The	maximum slop	be of	the curve $y = -$	- X ³ +	$-3x^{2}+9x-27$	is	
	a)	-16	b)	-6	c)	1	d)	12
36.	How	v many subsets	s can	be formed fron	n the	set { <i>x</i> , <i>y</i> , <i>z</i> }?		
	a)	3	b)	5	c)	8	d)	9
37.	For	any two sets A	and	B, <i>A</i> – <i>B</i> =				
	a)	$A \cap B$	b)	$A \cap B^{\circ}$	c)	$A^{c} \cap B$	d)	$A^{\circ} \cap B^{\circ}$
38.	lf tv mini	vo sets A and imum number o	B co of ele	ontain 3 and 6 ments in $A \cup B$	6 ele 3?	ments respecti	vely,	then what is the
	a)	3	b)	6	c)	9	d)	4
39.	Wha	at is the binomi	al ex	pansion of (1–	<i>x</i>) ⁻¹ ?	,		
	a)	$1-x+x^2-x$	^{.3} + ··		b)	$1+x+x^2+x$	³ + ··	
	c)	$1+2x+3x^{2}+$	+ •••		d)	$1+x+\frac{x^2}{2}+\cdots$	•	

40. For any n > r, if C(n, r) denotes the number of combinations of n objects taken r at a time, Which of the following is true?

7

- a) C(n,r) = C(n+1,r+1) b) C(n,r) = C(n+1,r-1)
- c) C(n,r) = C(n,n-r) d) None of these
- 41. C(n, r) + C(n, r 1) =a) C(n + 1, r)b) C(n + 1, r - 1)c) C(n, r + 1)d) None of the above

42.
$$\int \frac{1}{\sqrt{1-x^2}} dx =$$

a) $\sin^{-1} x + c$ b) co
c) Both (a) and (b) d) N

-) $\cos^{-1} x + c$
- d) None of the above
- 43. Which of the following statements is true?

a)
$$(A-B) \cap (B-A) = \varphi$$
 b) $(A-B) \cap (B-A) = U$

c)
$$(A - B) \cap (B - A) = A$$
 d) $(A - B) \cap (B - A) = B$

44. $A - (B \cap C) =$

a)
$$A-B\cup C$$
 b) $B\cup C-A^c$

- c) $(A B) \cup (A C)$ d) $(A B) \cap (A C)$
- 45. The relation n is a factor of m is
 - a) reflexive and symmetric
 - b) transitive and symmetric
 - c) reflexive, symmetric and transitive
 - d) reflexive and transitive, but not symmetric
- 46. Which of the following is true?
 - a) R and S are transitive $\Rightarrow R \cup S$ is transitive
 - b) R and S are transitive \Rightarrow R \cap S is transitive
 - c) R and S are reflexive \Rightarrow R \cap S is reflexive
 - d) R and S are symmetric \Rightarrow R \cup S is symmetric
- 47. Which of the following is an equivalence relation?
 - a) aRb if and only if a divides b
 - b) aRb if and only if a greater than or equal to b
 - c) aRb if and only if *a* congruent to *b* modulo *n*, for a fixed number *n*
 - d) None of these

- 48. Which of the following is anti-symmetric relation?
 - a) aRb if and only if a divides b
 - b) aRb if and only if a greater than b
 - c) aRb if and only if *a* congruent to *b* modulo *n*, for a fixed number *n*
 - d) None of these

49. Out of 80 pupils who scored first class in Mathematics or English, 50 obtained first class in Mathematics and 10 obtained first class in both English and Mathematics. How many scored first class in English, but not in Mathematics?

50. A dice is tossed twice. The probability of having a number greater than 4 on each toss is

- a) $\frac{1}{9}$ b) $\frac{1}{12}$ c) $\frac{1}{4}$ d) $\frac{2}{3}$
- 51. What is the probability that a non-leap year contains 53 Sundays?

a)	1 365	b)	53 365
c)	<u>1</u> 7	d)	$\frac{6}{7}$

52. Two cards are drawn successively with replacement from a well shuffled deck of 52 cards. What is the probability of drawing two aces?

a)	$\frac{1}{13} \times \frac{1}{13}$	b)	$\frac{1}{52} \times \frac{1}{52}$
c)	$\frac{4}{52} \times \frac{3}{51}$	d)	2 13

- 53. Let A and B be two events such that P(A) = 0.8, P(B) = 0.6 and $P(A \cap B) = 0.5$. Find the value of $P(A \cup B)$.
 - a) 0.9 b) 0.6 c) 1.4 d) 0.3

54.	Let A and B be two events such that $P(A) = 0.8$, $P(B) = 0.6$ and $P(A \cap B) = 0.5$. Find the value of $P(B \mid A)$.								
	a)	0.9	b)	0.67	c)	0.83	d)	0.3	
55.	Whi	ch of the follow	ing is	s a tautology?					
	a)	ho ightarrow q			b)	$p \lor q ightarrow p$			
	c)	$(p \rightarrow q) \rightarrow (q)$	$\eta \rightarrow \mu$	o)	d)	pvp ^c			
56.	Wha	at is the truth va	alue o	of $p v q$, when	n the	truth value of p	o is 0	and q is 1?	
	a)	0			b)	1			
	c)	can not be de	termi	ned	d)	data incomple	ete		
57.	Wha	at is the binary	num	per equivalent	to 7?				
	a)	100	b)	111	c)	1000	d)	110	
58.	Give	en ''All girls are	Blac	k" and "All Bla	ack a	re beautiful". If	A is	not Black then	
	a)	A is not beaut	iful		b)	A is not girl			
	c)	A is not girl ar	nd no	t beautiful	d)	A is not girl, b	ut be	autiful	
59.	X is	taller than Y, Y	∕ is ta	aller than A, B i	s talle	er than Y and Z	is ta	ller than B. Then	
	a)	X is taller than	י B		b)	X is shorter th	an B		
	c)	Y is shorter th	ian Z		d)	Y is taller than	١Z		
60.	lf pr of m	ime (x) is a fun at the end of	ction	which returns	true \	when x is prime	e, wh	at will be the value	
	m =	0							
	for ((i=10, i <=20, i+	·+)						
	{								
		if (prime i)							
		m=m+1							
	}								
	a)	3	b)	4	c)	5	d)	6	

1	А	В	С	D	Е
2	А	В	С	D	Е
3	Α	В	С	D	Е
4	А	В	С	D	Е
5	А	В	С	D	Е
6	А	В	С	D	Е
7	А	В	С	D	Е
8	А	В	С	D	Е
9	А	В	С	D	Е
10	А	В	С	D	Е
11	А	В	С	D	Е
12	А	В	С	D	Е
13	А	В	С	D	Е
14	А	В	С	D	Е
15	А	В	С	D	Е
16	А	В	С	D	Е
17	А	В	С	D	Е
18	А	В	С	D	Е
19	А	В	С	D	Е
20	А	В	С	D	Е

21	А	В	С	D	Е
22	А	В	С	D	Е
23	А	В	С	D	Е
24	Α	В	С	D	Е
25	А	В	С	D	Е
26	А	В	С	D	Е
27	А	В	С	D	Е
28	А	В	С	D	Е
29	А	В	С	D	Е
30	А	В	С	D	Е
31	А	В	С	D	Е
32	А	В	С	D	Е
33	А	В	С	D	Е
34	А	В	С	D	Е
35	А	В	С	D	Е
36	А	В	С	D	Е
37	А	В	С	D	Е
38	Α	В	С	D	Е
39	Α	В	С	D	Е
40	А	В	С	D	Е

А 41 В С D Е 42 А В С D А 43 В С D А 44 В С D А 45 С D В А 46 В С D 47 А В С D А 48 В С D Α 49 В С D А 50 В С D 51 А В С D 52 А В С D 53 A В С D

Е

Ε

Е

Е

Е

Е

Е

Е

Е

Е Е Е 54 А В С D Е А С 55 В D Е 56 A С D Е В 57 А В С D Ε А В С D Е 58 А С 59 В D Е 60 A C D В Е

L – 4033

ANSWER SHEET — P ART – A

DATA SCIENCE

PART – B

(Descriptive Type)

Answer any Eight questions.

(8 × 5 = 40 Marks)

- 1. In a sequence of 4 numbers, the first three are in G.P and the last three are in A.P. with common difference 6. If first number is same as fourth number, find the numbers.
- 2. If *a*, *b*, *c* are in H.P., show that if a > c then $\frac{1}{b-c} + \frac{1}{a-b} > \frac{4}{a-c}$.
- 3. Solve the system of linear equations: 2x + 3y z = 9,

$$3x - 4y + 2z = 2$$
$$x - 3y + 3z = 5$$

- 4. Prove that $\log_c(ab) = \log_c a + \log_c b$.
- 5. Find the maximum and minimum values attained by the function $f(x) = x^2 3x + 3$ in the region [0, 3].
- 6. Evaluate $\int x^3 e^{x^2} dx$.
- 7. 3 women and 5 men are to sit in a row for a dinner. In how many ways they can be arranged so that no two women sit next to each other?
- 8. Find the number of combinations of the word INDEPENDENCE taken 4 at a time.
- 9. X and Y appears for an interview for two vacancies in the same post. The probability that X gets selected is $\frac{1}{7}$ and that of Y is $\frac{1}{5}$. Find the probability that only one of them will be selected.
- 10. Out of 21 tickets numbered 1 to 21, three tickets are drawn at random. Find the probability that the numbers are in A.P.
- 11. Prove that $(p \rightarrow q) \cup (q \rightarrow r) = p \rightarrow r$.
- 12. Write an algorithm to check whether a given number is prime or not.