Code No.

L – 4037

Entrance Examination for Admission to the P.G. Courses in the Teaching Departments, 2021 CSS MATHEMATICS/MATHEMATICS WITH FINANCE AND COMPUTATION **General Instructions** 1. The Question Paper is having two Parts — Part 'A' Objective type (60%) & Part 'B' Descriptive type (40%). 2. Objective type questions which carry 1 mark each are to be (\checkmark) 'tick marked' in the response sheets against the appropriate answers provided. 8 questions are to be answered out of 12 questions carrying 5 marks each in Part 'B'. 3. 4. Negative marking : 0.25 marks will be deducted for each wrong answer in Part 'A'. Time : 2 Hours Max. Marks: 100 To be filled in by the Candidate Register in Figures Number in words PART – A (Objective Type)

Choose appropriate answer from the options in the questions. **One** mark **each**.

 $(60 \times 1 = 60 \text{ marks})$

- 1. The domain of convergence for $1 + x + x^2 + ...$ is
 - a) (-1, +1) b) [-1, +1]
 - c) (- 2, 2) d) None of these

DONOTWRITEHERE

2. The derivative of the function $f(x) = x^{2m-1}$ is

- a) Even function b) Odd function
- c) Constant function d) None of these
- 3. The radius of Convergence of the series $1 x^2 + x^4 x^6 + \cdots$ is
 - a) 1 b) Zero
 - c) 2 d) None of these

L – 4037

- 4. Series $\sum a_n$ convergence absolutely if
 - a) $\sum |a_n|$ converges b) $\sum a_n$ converges
 - c) $\sum |a_n|$ diverges d) None of these
- 5. The value of $\arg(z) + \arg(\overline{z}), (z \neq 0)$ is
 - a) 0 b) π
 - c) $\frac{\pi}{2}$ d) $\frac{\pi}{4}$
- 6. The empty set of a metric space (X, ρ) is
 - a) Neither open nor closed b) Open set and closed set both
 - c) Does not exist d) None of these

7. If z = a is an isolated singularity of *f*, then a is the pole of *f*, if

- a) $\lim_{z\to a} |f(z)| = 0$ b) $\lim_{z\to a} |f(z)| = a$
- c) $\lim_{z\to a} |f(z)| = \infty$ d) None of these
- 8. What will be the value of $\lim_{n\to\infty} \frac{2n^2+3}{3n^2+5n} =$
 - a) 2/3 b) 3/2
 - c) 3/5 d) 5/8

- 9. The name of the conic represented by the equation 2xy + 4x 6y + 17 = 0 is
 - a) an ellipse b) a circle
 - c) a parabola d) a hyperbola

10. The vertex of the parabola $x^2 + 2y = 8x - 7$ is

- a) $\left(4,\frac{7}{2}\right)$ b) $\left(4,\frac{9}{2}\right)$ c) $\left(\frac{9}{2},4\right)$ d) (1,0)
- 11. The equation $\frac{x^2}{10-a} + \frac{y^2}{4-a} = 1$ represents an ellipse, if
 - a) a < 4
 b) a > 4
 c) 4 < a < 10
 d) a > 10
- 12. The equation of the hyperbola with vertices (3,0),(-3,0) and semi latusrectum 4 is given by
 - a) $4x^2 3y^2 + 36 = 0$ b) $4x^2 3y^2 + 12 = 0$
 - c) $4x^2 3y^2 36 = 0$ d) None of these
- 13. The lines 3x + 4y + 6 = 0, $\sqrt{2}x + \sqrt{3}y + 2\sqrt{2} = 0$ and 4x + 7y + 8 = 0 are
 - a) sides of a triangle b) parallel
 - c) concurrent d) none of these

14. The number of common tangents to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 6x - 8y = 24$, is a) 0 b) 1 c) 3 d) 4

- 15. Consider the following statements
 - 1. A differential function is continuous
 - 2. A continuous function is differentiable.
 - 3. A Continuous function on a closed interval [a,b] of finite length is uniformly continuous on [a,b].

Which of these statements are correct?

- a) 1,2 and 3 b) 2 and 3 c) 1 and 3 d) 1 and 2
- 16. The function f(x) = |x| at x = 0 is
 - a) Continuous and differentiable
 - b) Continuous but not differentiable
 - c) Not continuous but differentiable
 - d) Neither continuous nor differentiable
- 17. If g is the inverse of f and $f'(x) = \frac{1}{1 + x^3}$, then g'(x) is equal to

a)
$$\frac{-1}{2(1+x^2)}$$

b) $1+[g(x)]^3$
c) $\frac{1}{2(1+x^2)}$
d) None of these

18. $\int \sec^n x \tan x \, dx$ is equal to

a)
$$\frac{\sec^2 x}{2} + c$$
 b) $\frac{\sec^2 x}{2} + c$

c)
$$\frac{\tan x}{2} + c$$

b)
$$\frac{\sec^n x}{n} + c$$

d) $\frac{(\sec^n x)\tan x}{n} + c$

С

- 19. $\int x^2 e^x dx$ is equal to
 - a) $x^2 e^x 2[e^{2x} xe^x] + c$
 - b) $x^2 e^x 2[e^x xe^x] + c$
 - c) $x^2 e^x 2[xe^{2x} e^x] + c$
 - d) $x^2 e^x 2[xe^x e^x] + c$

20. $\int (\log x)^2 dx$ is equal to

- a) $x(\log x)^2 2[x\log x x] + c$
- b) $x(\log x)^2 2[\log x x] + c$
- c) $x(\log x)^2 2[\log x^2 x] + c$
- d) $x(\log x)^2 2[\log x 2x] + c$

21. The value of $\int_0^{2\pi} [2 \sin x] dx$ is

a) $-\pi$ b) -2π c) -3π d) -4π

22. The value of the integral $\int_{1}^{3} |(x-1)(x-2)(x-3)| dx$ is

- a) $\frac{1}{3}$ b) $\frac{1}{2}$ c) $\frac{9}{4}$ d) None of these
- 23. The limiting value of $(\cos x)^{1/\sin x}$ as $x \to 0$ is
 - a) 1 b) e
 - c) 0 d) None of these

24. Which of the following is not a valid variable name declaration?

- a) float PI = 3.14 b) double PI = 3.14
- c) int PI=3.14 d) #define PI 3.14

25. Which among the following is not a logical or relational operator?

a) != b) == c) || d) =

26. Which of the following is an invalid if-else statement?

- a) if (if(a==1)){} b) if (func 1 (a)){}
- c) if(a){} d) if (char) a) {}

27. The code 'for (;;)' represents an infinite loop. It can be terminated by

a) break b) exit (0) c) abort () d) terminate

28. A first order differential equation M(x, y)dx + N(x, y)dy = 0 is exact if

- a) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$ b) $\frac{\partial M}{\partial x} \neq \frac{\partial N}{\partial y}$ c) $\frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$
- c) $\frac{\partial M}{\partial x} < \frac{\partial N}{\partial y}$ d) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

29. What is the order and degree of a differential equation $\frac{d^2y}{dx^2} + \sqrt{1 + \left(\frac{dy}{dx}\right)^3} = 0$

- a) First order, second degree
- b) First order, first degree
- c) Second degree, first order
- d) Second order, second degree

- 30. The integrating factor for the differential equation 2ydx + xdy = 0 is
 - a) x b) y c) xy d) y^2
- 31. The value of Wronskian $W(x, x^2, x^3)$ is
 - a) $2x^4$ b) $2x^2$ c) $2x^3$ d) None of these
- 32. The laplace Transform of $e^{t}(\sin t)$

a)
$$\frac{a}{a^2 + (s+1)^2}$$
 b) $\frac{a}{a^2 + (s-1)^2}$

c)
$$\frac{s+1}{a^2+(s+1)^2}$$
 d) $\frac{s+1}{a^2+(s-1)^2}$

33. The inverse of Laplace transform of $F(s) = (5s + 1)/(s^2 - 25)$ is

- a) $5 \cosh 5t + 1/5 \sinh 5t$ b) $5 \cos 5t + 1/5 \sin 5t$
- c) $\cosh 5t + 1/5 \sinh 5t$ d) $5 \cos 5t + \sin 5t$

34. The point (0,0) in the domain of f(x, y) = sin(xy) is a point of

- a) saddle b) minima c) maxima d) constant
- 35. For a function f(x, y) to have no extremum value at (a, b) is
 - a) $rt s^2 > 0$ b) $rt s^2 < 0$
 - c) $rt s^2 = 0$ d) none of the above

36.	f(x ,	$y) = (\sin xy + x)$	x ³ y)/	$x + x^3$ find a	f _{xy} at (0	, 1)		
	a)	2	b)	5	c)	1	d)	undefined
37.	Lap	ace transform	is ba	sically an				
	a)	differential tra	nsfor	m	b)	integral trar	nsform	
	c)	algebraic tran	sform	ı	d)	rational trar	nsform	
38.	The	value of the de	eterm	inant <mark>p m</mark> n p	p n is m			
	a)	$m^3 + n^3 + p^3$			b)	3 <i>mnp</i>		
	c)	$m^{3} + n^{3} + p^{3}$	– 3 <i>m</i>	np	d)	zero		
39.	lf ur a) c)	iitary matrix A i symmetric ma hermitian mat	s rea ıtrix rix	I, then A is –	b) d)	skew-symm orthogonal	netric m matrix	natrix
40.	The	matrix $A = \begin{bmatrix} 5\\ 3 \end{bmatrix}$	3 5]	has a eigen	values			
	a)	8, 8	b)	8, 3	c)	8, 2	d)	0, 0
41.	Whi 2, 6	ch is the numb , 12, 20, 30, 42	er tha , 56,	at comes ne>	kt in the	following se	quence	9
	a)	60	b)	64	c)	72	d)	70
42.	Poir How	nting a man, a / is the woman	wom relat	an said, "His ed to the ma	s mothe n?	er is the only	daugh	ter of my mother".
	a)	Mother			b)	Daughter		
	c)	Sister			d)	Grandmoth	er	

9

43.	The	range of the s	seque	ence $(1 + (-1)^n)$	is				
	a)	Ν	b)	Ζ	c)	{0, 1}	d)	{0, 2}	
44.	The	e following vect	tors (1,9,9,8), (2,0,0	,8) an	d (2,0,0,3) are			
	a)	Linearly depe	ender	nt	b)	Linearly indep	bend	ent	
	c)	Constant			d)	None of these	Э		
45.	The	rank of zero r	natrix	is					
	a)	zero			b)	one			
	c)	order of the r	natrix		d)	none of these	;		
46.	Em	pty set is							
	a) Linearly dependent			nt	b)	Linearly independent			
	c)	Does not spa	an {0}		d)	None of these	Ð		
47.	lf <i>f</i>	$: [a, b] \rightarrow R$ is	conti	nuous and mo	noton	e function, the	n		
	a)	f is Riemanr	n inte	orable on [a, b]					
	, h)	f is not Riem	nann i	integrable on [a bl				
	c)	f is Piemanr		$\frac{1}{2}$	а, ој				
	d)	None of thes	Δ	grable of A					
	u)	None of thes	C						
48. Let $S = [0,1]$ the maximal element of S is									
	a)	0	b)	1	c)	ϕ	d)	2	
49.	Hov ALL	v many differe AHABAD?	ent wo	ords can be m	ade c	out of the letter	s, wł	nich form the word	
	a)	<u>4!</u> 9!2!	b)	2! 4!9!	c)	<u>9!</u> 4!2!	d)	<u>4!2!</u> 9!	

- 50. The number of elements in the set { $m : 1 \le m \le 1000$, m and 1000 are relatively prime} is
 - a) 100 b) 250 c) 300 d) 400

51. If \vec{a}, \vec{b} and \vec{c} are unit coplanar vectors then the scalar triple product $\left[2\vec{a} - \vec{b} 2\vec{b} - \vec{c} 2\vec{c} - \vec{a}\right]$ is equal to

- a) 0 b) 1
- c) $-\sqrt{3}$ d) $\sqrt{3}$
- 52. A unit vector perpendicular to both the vectors $\hat{i} + \hat{j}$ and $\hat{j} + \hat{k}$ is

- 53. The equation of the plane through the points (2,3,1) and (4,-5,3) and parallel to *x*-axis is
 - a) x z 1 = 0 b) 4x + y 11 = 0
 - c) y + 4z 7 = 0 d) None of these

54. The coordinates of the point of intersection of the line $\frac{x+1}{1} = \frac{y+3}{3} = \frac{z-2}{-2}$ with the plane 3x + 4y + 5z = 25 are

- a) (5, 15, 10) b) (5, 15, -10)
- c) (5, -15, 10) d) None of these

55. The plane $2x - (1 + \lambda)y + 3\lambda z = 0$ passes through the intersection of the planes

- a) 2x y = 0 and y + 3z = 0
- b) 2x y = 0 and y 3z = 0
- c) 2x + 3z = 0 and y = 0
- d) None of the above

56. In a three-dimensional space, the equation 3x - 4y = 0 represents

- a) a plane containing Z-axis b) a plane containing X-axis
- c) a plane containing *y*-axis d) None of these

57. The three planes x + y = 0, y + z = 0 and x + z = 0

- a) meet in a unique point
- b) meet in a line
- c) meet taken two at a time in parallel lines
- d) None of the above

58. The equation $x^2 + y^2 + z^2 - 4x + 6y - 8z + 29 = 0$ represents

- a) a sphere b) the empty set
- c) a point d) none of these

59. The angle between the lines 2x = 3y = -z and 6x = -y = -4z is

- a) 30° b) 45°
- c) 60° d) 90°
- 60. The center of the circle given by $\vec{r} \cdot (\hat{i} + 2\hat{j} + 2\hat{k}) = 15$ and $\vec{r} (\hat{j} + 2\hat{k}) = 4$ is
 - a) (1,2,4) b) (3,1,4)
 - c) (1,3,4) d) None of these

ANSWER SHEET — PART – A

21	А	В	С	D	Е
22	А	В	С	D	Е
23	А	В	С	D	Е
24	А	В	С	D	Е
25	А	В	С	D	Е
26	А	В	С	D	Е
27	А	В	С	D	Е
28	А	В	С	D	Е
29	А	В	С	D	Е
30	А	В	С	D	Е
31	А	В	С	D	Е
32	А	В	С	D	Е
33	А	В	С	D	Е
34	А	В	С	D	Е
35	А	В	С	D	Е
36	А	В	С	D	Е
37	А	В	С	D	Е
38	А	В	С	D	Е
39	А	В	С	D	Е
40	А	В	С	D	Е

MATHEMATICS/MATHEMATICS WITH FINANCE AND COMPUTATION

PART – B

(Descriptive Type)

Answer any eight questions.

 $(8 \times 5 = 40 \text{ Marks})$

1. Prove that if $(a^n) \to I$, $(b^n) \to I$ and $a_n \leq c_n \leq b_n$ for all n, then $(c_n) \to I$

2. Test the convergence of
$$\sum \frac{n^3 + a}{2^n + a}$$

- 3. Show that the function $f(z) = e^{x^2 y^2} [\cos(2xy) + i \sin(2xy)]$ is analytic and find its derivative.
- 4. If f(x) is analytic, show that
 - (i) $\nabla^2 |\operatorname{Re} f(z)|^2 = 2|f'(z)|^2$.
 - (ii) $\nabla^2 |\operatorname{Im} f(z)|^2 = 2|f'(z)|^2$.
 - (iii) $\nabla^2 |f(z)|^2 = 4 |f'(z)|^2$.
- 5. Find the Laplace transformation of $f(t) = e^{at} \sin(bt)$.
- 6. Find all real solutions of $\frac{d^2y}{dx^2} 6\frac{dy}{dx} + 9y = 3x$.

- 7. Find the triple vectors of $a \times (b \times c)$ and $(a \times b) \times c$. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + \hat{k}$.
- 8. Solve the equation x + y + z = d, $ax + by + cz = d^2$, $a^2x + b^2y + c^2z = d^3$.
- 9. Show the matrix $\begin{bmatrix} 2 & 1 & 4 \\ 8 & -1 & 3 \\ 3 & -5 & 0 \end{bmatrix}$ as the sum of a symmetric and skew symmetric

matrix.

10. Write a c- program that reads test scores, into the array score, adds them and prints their average.

11. Solve
$$\frac{dy}{dx} = \frac{x^2 + 2}{y}$$
.

12. Write a program to calculate the average of set of *N* numbers.