Code No.	J – 2269
----------	----------

Liiuali	ce Examinat	ion for A		sion to to		S. Cou	rses in	the Te	aching
				CSS					
		BIODI	VERSI	TY CON	SERV	ATION			
			Gener	al Instruc	tions				
	Question Pap scriptive type (4		ing two	Parts —	Part 'A'	Objecti	ive type	(60%) 8	Part 'B
•	ective type que			•			e (✔) 'ti	ck marke	ed' in the
3. 8 qı	uestions are to	be answe	red out	of 12 que	stions c	arrying s	5 marks	each in F	Part 'B'.
	gative markin Part 'A'.	g : 0.2	5 marks	s will b	e dedu	icted fo	or each	n wrong	answe
Time: 2	Hours						I	Max. Maı	ks : 100
To be fil	lled in by the Ca	andidate							
Register	_								
Number	in words								
			F	PART – A	\				
				PART – <i>P</i> jective Ty					
Choose a	ppropriate ansv	ver from t	(Obj	jective Ty	pe)	ns. One	mark e a	ach.	
Choose a	ıppropriate ansı	wer from t	(Obj	jective Ty	pe)	ns. One		ach. ×1 = 60) marks
	appropriate ansv		(Obj	jective Ty	pe)	ns. One) marks
			(Obj	jective Ty	pe)) marks

DONOTWRITEHERE

- 2. Floridean starch is the reserve food in
 - a) Chlorophyceae

b) Xanthophyceae

c) Cyanophyceae

- d) Rhodophyceae
- 3. Similarities of pteridophytes with bryophytes
 - a) Heteromorphic alternation of generations
 - b) Sexual reproduction is anisogamous
 - c) Water is not essential for fertilization
 - d) Sex organs doesn't have any protection layers

4.	Whi	ch one is known as ' <i>goddess of fer</i>	tility'	
	a)	Azolla pinnata	b)	Equisetum arvense
	c)	Cyathea contaminans	d)	Pteridum aquilinum
5.	Silic	ula fruits are common in the family		
	a)	Apiaceae	b)	Brassicaceae
	c)	Annonaceae	d)	Anacardiaceae
6.	Whi	ch layer of temperate lake have lov	ver p	hotosynthetic rate?
	a)	Thermocline	b)	Hypolimnion
	c)	Epilimnion	d)	Littoral zone
7.	Sing	gle letter code of Lysine		
	a)	L	b)	I
	c)	K	d)	Υ
8.	Carl	poxyl methyl cellulose having nega	tive c	charge is used in
	a)	Anion exchange chromatography	b)	Cation exchange chromatography
	c)	Gel filtration chromatography	d)	Size exclusion chromatography
9.	Pyth	nium graminicolum belongs to		
	a)	Oomycetes	b \	D 111 (
	,	Comycetes	b)	Basidiomycete
	c)	Ascomycete	d)	Zygomycete
10.	c)	•	•	•
10.	c)	Ascomycete	•	•
10.	c) Cha	Ascomycete racteristics of <i>r</i> -selected species	d)	Zygomycete
10. 11.	c) Cha a) c)	Ascomycete racteristics of <i>r</i> -selected species Body size large	d) b) d)	Zygomycete Length of life long Reproductive age late
	c) Cha a) c)	Ascomycete racteristics of <i>r</i> -selected species Body size large Reproductive rate high	d) b) d)	Zygomycete Length of life long Reproductive age late

12.	Pho	tosystem I and II was present in		
	a)	Thylakoid lumen	b)	Thylakoid membrane
	c)	Stroma	d)	Chloroplast inner membrane
13.	In ti		tiatior	n of root from callus the medium must
	a)	Low auxin and high cytokinin	b)	High auxin and high cytokinin
	c)	High auxin and low cytokinin	d)	Low auxin and low cytokinin
14.	Isoe	electric focusing is associated with		
	a)	Western blotting	b)	2-D gel electrophoresis
	c)	Affinity chromatography	d)	Ion exchange chromatography
15.	Ord	er of sexual reproduction events in	fung	i
	a)	Karyogamy – Meiosis – Plasmoga	amy	
	b)	Karyogamy – Plasmogamy – Mei	osis	
	c)	Plasmogamy – Karyogamy – Mei	osis	
	d)	Meiosis – Karyogamy – Plasmoga	amy	
16.	Hor	mologous structure is seen in		
	a)	Pentadactyl limb of invertebrates		
	b)	Insect mouth parts		
	c)	Jointed legs of insects and vibrate	es	
	d)	Wings of bat, birds, insects		
17.	Kind	o veins are found in		
	a)	Eucalyptus	b)	Rubber
	c)	Citrus	d)	Euphorbia
18.	The	unit used for representing ozone I	ayer t	hickness
	a)	Dobson	b)	Kilometre
	c)	Metre	d)	Decibal
		4	1	J – 2269

19.	Arb	uscular mycorrhizae association he	elps fo	or the absorption of
	a)	Calcium	b)	Magnesium
	c)	Sulphur	d)	Phosphorous
20.	Wh	ich of the following codons is popul	arly k	know as "amber"?
	a)	AUG	b)	UAA
	c)	UAG	d)	UGA
21.		enzyme that catalyses the transforsphate-donating molecules to spec		phosphate groups from high-energy ubstrates.
	a)	Phosphatase	b)	Kinase
	c)	Peptidase	d)	Peptidyl transferase
22.	Allo	steric enzyme possesses		
	a)	Active site and an allosteric site		
	b)	Active site and two types of allost	eric s	sites
	c)	Active site and three types of allo	steric	sites
	d)	Three types of allosteric		
23.	Hib	ernation is exhibited by		
	a)	Ectotherm	b)	Endotherm
	c)	Homeotherm	d)	Heterotherm
24.	Mat	ting system between single female	and r	multiple males
	a)	Polygynandry	b)	Polyandry
	c)	Monogamy	d)	Polygyny
25.	Intir	ne is made up of		
	a)	Sporopollenin	b)	Peptidoglycan
	c)	Pectin	d)	Cellulose

26.	Nar	ne the aerial and terrestrial algae		
	a)	Protococcus	b)	Sargassum
	c)	Ulva	d)	Spirogyra
27.	Inte	r petiolar stipules are present in		
	a)	Rubiaceae	b)	Annonaceae
	c)	Lamiaceae	d)	Poaceae
28.	Whi	ich of the events causes greenhous	se eff	ect?
	a)	Condensation	b)	Evaporation
	c)	Radiation	d)	Vaporisation
29.	Mor	noecious gymnosperm is		
	a)	Agathis	b)	Cycas
	c)	Ginkgo	d)	Gnetum
30.	Late	eral roots originate from		
	a)	Endodermis	b)	Cortex
	c)	Pericycle	d)	Epidermis
31.	'Ro	und up' pesticide is an inhibitor of		
	a)	Acetate mevalonate pathway	b)	DOXP pathway
	c)	Shikimic acid pathway	d)	Hatch and Slack pathway
32.	Vind	cristine and vinblastine is obtained	from	
	a)	Euphobia peplus	b)	Taxus brevifolia
	c)	Camptotheca acuminate	d)	Catharanthus roseus
33.	Cro		dual	with a known homozygous recessive
	a)	Reciprocal cross	b)	Test cross
	c)	Back cross	d)	Dihybrid cross

34.	Org	ganism with largest number of chro	moso	me
	a)	Cycas	b)	Giant sequoia
	c)	Ophioglossum	d)	Sargassum
35.	lf th		JCG :	3' then the sequence of sense strand
	a)	3' TAGC 5'	b)	5' TAGC 3'
	c)	3' ATCG 5'	d)	5' ATCG 3'
36.	In <i>E</i>	Drosophila melanogaster, the sex d	etern	nination is made on the basis of
	a)	Ratio between X chromosome an	id Y d	chromosome
	b)	Ratio between X chromosome an	d au	tosome
	c)	Ratio between Y chromosome an	d au	tosome
	d)	Both (b) and (c)		
37.	In N	Mendelian dihybrid cross the variou	s phe	enotypes are in the ratio
	a)	9:3:3:1	b)	9:3:3:1
	c)	9:3:1	d)	9:1
38.	Mei	iotic cell division results in cells tha	t hav	е
	a)	n chromosomes and are genetical	ally id	entical
	b)	n chromosomes and are genetical	ılly di	fferent
	c)	2 n chromosomes and are geneti	cally	identical
	d)	2 n chromosomes and are geneti	cally	different
39.	Wh	ich one is type II topoisomerase?		
	a)	DNA gyrase	b)	DNA helicase
	c)	DNA primase	d)	DNA ligase

40.	In te	erms of DNA and RNA structure, w	hat is	s a nucleotide?							
	a)	A nucleotide is a heterocyclic base									
	b)	A nucleotide is a sugar molecule covalently bonded to a heterocyclic base									
	c)	A nucleotide is a sugar molec heterocyclic base	ule k	ponded to phosphate group/s and a							
	d)	A nucleotide is a heterocyclic bas	e bo	nded to phosphate group/s							
41.		ich of the following is not a resear gene therapy?	chec	I means of delivering therapeutic DNA							
	a)	Polymers	b)	Bacteria							
	c)	Virus	d)	Liposomes							
42.	Nur	mber of autosomes in humans									
	a)	44	b)	21 pairs							
	c)	45	d)	46							
43.	Mai	den hair fern is									
	a)	Pteris	b)	Adiantum							
	c)	Lycopodium	d)	Osmunda							
44.	Sm	allest gymnosperm									
	a)	zamia pygmaea	b)	zamia pumila							
	c)	zamia skinneri	d)	zamia Montana							
45.	The	e elemental composition of Bordeux	mix	ture is							
	a)	Sulphur : Carbon : Water									
	b)	Copper : Sulphur : Water									
	c)	Copper : Sulphate : Lime : Water									
	d)	Copper : Chloride : Lime : Water									

46.	Wite	ches Broom disease was caused by	y the	deficiency of
	a)	Mn	b)	Mg
	c)	N	d)	В
47.		ich one of the following biogeoch enhouse effect?	emic	al cycle is connected with enhanced
	a)	Nitrogen cycle	b)	Oxygen cycle
	c)	Carbon cycle	d)	Phosphorous cycle
48.	Pre	cursor of Indole Acetic Acid (IAA) is	8	
	a)	Tryptophan	b)	Methionine
	c)	Aspartic acid	d)	Glutamic acid
49.	Blas	st disease of paddy is caused by		
	a)	Helminthosporium oryzae	b)	Xanthomonas oryzae
	c)	Pyricularia oryzae	d)	Dreschlera oryzae
50.		equilibrium between a liquid pha ous structure and a mobile liquid ph		apped inside the pores of stationary is called
	a)	Adsorption chromatography	b)	Partition chromatography
	c)	Gel chromatography	d)	Ion-exchange chromatography
51.	Col	umella is present in sporophyte of		
	a)	Riccia	b)	Marchantia
	c)	Anthoceros	d)	Porella
52.	The	connecting compound between gl	ycoly	sis and Kreb's cycle is
	a)	Ethanol	b)	Malic acid
	c)	Pyruvic acid	d)	CO ₂

53.	Lam	npbrush chromosomes are present	in	
	a)	Ascaris	b)	Rattus
	c)	Drosophila	d)	Balanoglosus
54	The	function of chaperons		
0 1.		•	b)	Drotain aunthonia
	a)	Protein folding	b)	Protein synthesis
	c)	Nucleic acid synthesis	d)	Lipid synthesis
55.	A cli	imax community		
	a)	Is self-sustaining		
	b)	Is never changing		
	c)	Show growth proceeding in a pred	dictat	ole pattern
	d)	Is not likely to be distributed by lo		•
	_			
56.	Brar	nched hydrophobic amino acids are	Э	
	a)	Valine, leucine, isoleucine	b)	Valine, threonine
	c)	Leucine, valine, threonine	d)	Threonine
57.	Whe	en one gene affects more than one	pher	notype it is known as
	a)	Dominance	b)	Epistasis
	c)	Pleiotrophy	d)	Penetrance
58.	The	duplicate of holotype is referred as	5	
	a)	Isotype	b)	Lectotype
	c)	Syntype	d)	Neotype
	C)	Зуптуре	u)	Neotype
59.	Bulli	iform cells are seen in		
	a)	Nymphaea	b)	Sorghum
	c)	Ficus	d)	Brassica
60.	Whi	ch one of the following are the bes	t indi	cators of air pollution?
	a)	Algae	b)	Fungi
	•	Lichens	d)	J

ANSWER SHEET — PART – A

1	Α	В	С	D	Е	21	Α	В	С	D	Е		41	Α	В	С	D	Е
2	Α	В	С	D	Е	22	Α	В	С	D	Е		42	Α	В	С	D	Е
3	Α	В	С	D	Е	23	Α	В	С	D	E		43	Α	В	С	D	Е
4	Α	В	С	D	Е	24	Α	В	С	D	Е]	44	A	В	С	D	Е
5	Α	В	С	D	E	25	Α	В	С	D	Е]]	45	Α	В	С	D	E
6	Α	В	С	D	E	26	A	В	С	D	E]]	46	A	В	С	D	E
] 1						
7	Α	В	С	D	Е	27	Α	В	С	D	Е		47	Α	В	С	D	Е
8	Α	В	С	D	Ε	28	Α	В	С	D	Е		48	Α	В	С	D	Е
9	Α	В	С	D	Е	29	Α	В	С	D	Е		49	Α	В	С	D	Ε
10	Α	В	С	D	Е	30	Α	В	С	D	Е		50	Α	В	С	D	Е
11	Α	В	С	D	Е	31	Α	В	С	D	Е		51	Α	В	С	D	Е
12	Α	В	С	D	Е	32	Α	В	С	D	Е		52	Α	В	С	D	Е
13	Α	В	С	D	Е	33	Α	В	С	D	Е		53	Α	В	С	D	Е
14	Α	В	С	D	Е	34	Α	В	С	D	Е		54	Α	В	С	D	Е
15	Α	В	С	D	Е	35	Α	В	С	D	Е		55	Α	В	С	D	Е
16	Α	В	С	D	Е	36	Α	В	С	D	Е		56	Α	В	С	D	Е
17	Α	В	С	D	Е	37	Α	В	С	D	Е		57	Α	В	С	D	Е
18	Α	В	С	D	Е	38	Α	В	С	D	Е		58	Α	В	С	D	Е
19	Α	В	С	D	Е	39	Α	В	С	D	Ε		59	Α	В	С	D	Ε
20	Α	В	С	D	Е	40	Α	В	С	D	Е		60	Α	В	С	D	Ε

11

BIODIVERSITY CONSERVATION

PART - B

(Descriptive Type)

Answer any eight quest	swer any	eight	questions.
------------------------	-----------------	-------	------------

 $(8 \times 5 = 40 \text{ Marks})$

- 1. Explain stellar evolution in pteridophyes.
- 2. Explain genomics and proteomics.
- 3. List out common economically important plants.
- 4. Write a note on polyploidy breeding.
- 5. Explain the 'Z-scheme' in light reaction of photosynthesis.
- 6. Give a brief account on chromosome structure.
- 7. Explain eukaryotic cell cycle.
- 8. Explain the mechanism of sexual reproduction in Basidiomycetes.
- 9. Give an account on chromosomal aberrations.
- 10. Describe nitrogen metabolism.
- 11. Give a note on secondary thickening in monocots.
- 12. Differentiate between eukaryotic and prokaryotic replication.

14	J – 2269

15	J – 2269

16	J	- 2269

ı	17	J – 2269
	• •	J - 2209

18	J – 2269

19	J – 2269

		_
20	J – 2269	a

21	J – 2269

1		
	22	J – 2269

Γ		
	23	J - 2269
,		