Code No.	J – 2278
----------	----------

				CSS					
			_		_				
			P	PHYSICS	5				
			Gener	ral Instruc	tions				
	Question Pape criptive type (40		ing two	Parts —	Part 'A'	Objecti	ve type	(60%)	& Part 'E
•	ctive type que onse sheets ag			•			e (✔) 't	ick mark	ed' in th
3. 8 qu	estions are to b	e answe	red out	of 12 que	stions ca	arrying 5	5 marks	each in	Part 'B'.
	ative marking art 'A'.	1 : 0.2	5 mark	s will b	e dedu	cted fo	or eacl	n wrong	g answe
Time : 2 H	Hours							Мах. Ма	rks : 10
To be fill	ed in by the Ca	ndidate							
Register	in Figures								
N. L. Land L. C.									
Number	in words				•				
Number	in words								
Number	in words								
Number	in words								
Number	in words			PART – A					
	in words			PART – A					
	ppropriate answ	ver from t	(Ob	jective Ty	pe)	ns. One			
	<u></u>	ver from t	(Ob	jective Ty	pe)	ns. One		ach.) × 1 = 6	0 mark
Choose ap	<u></u>		(Ob	jective Ty	pe) questior				0 mark
Choose ap	ppropriate answ	confined	(Ob	jective Ty	pe) questior	called			0 mark

DONOTWRITEHERE

- 2. Photoelectric effect can be explained by
 - a) Wave nature of light
 - b) Particle nature of light
 - c) Both wave nature and particle nature of light
 - d) None of the above
- 3. In photoelectric effect the electrons are ejected from the
 - a) Inner shell

b) Surface

c) From the core

d) The nucleus

4.	The	energy of a photon depends on its	3	
	a)	Amplitude	b)	Velocity
	c)	Temperature	d)	Frequency
5.	The	Bohr quantum condition for a stab	ole ato	om is
	a)	L = nh/2	b)	$L = nh/2\pi$
	c)	$L = 2\pi h/n$	d)	$L = \pi h/n$
6.	The	charge of an electron was first me	easur	ed in
	a)	Cathode ray experiment by J.J. T	homs	son
	b)	Photoelectric effect experiment		
	c)	Millikan's oil drop experiment		
	d)	Electron diffraction by aluminium	foil	
7.		transformation of coordinates of a ther inertial frame of reference is c		ent in one inertial frame of reference to
	a)	Galilean transformation	b)	Newton's transformation
	c)	Newton's second law	d)	Cartesian coordinates
8.	Mor	ment of linear momentum is		
	a)	$r \times mv$	b)	$r \times m$
	c)	$r \times v$	d)	r/m v
9.	Col	our in a soap bubble or in an oil slic	ck on	the road are caused by
	a)	Diffraction	b)	Polarization
	c)	Thin film interference	d)	Light intensity change
10.	A lic	quid opposes relative motion betwe	en it	s layers due to
	a)	Surface tension	b)	Viscosity
	c)	Elasticity	d)	Diffusion

11.		ch one of the following objects, mo Broglie wavelength?	oving	at the same speed, has the greatest
	a)	Neutron	b)	Electron
	c)	Tennis ball	d)	Alpha particle
12.	Free	ezing point of Mercury is		
	a)	−39°C	b)	−29°C
	c)	0°C	d)	−77°C
13.	C _P -	- C _v =		
	a)	Q/J	b)	R/J
	c)	Q/R	d)	R/Q
14.	The	number of microstates in a macros	state	is called
	a)	Thermal frequency	b)	Thermodynamic frequency
	c)	Statistical frequency	d)	Any of the above
15.	Han	niltonian is given by		
	a)	T + V	b)	T – V
	c)	T/V	d)	V/T
16.	Lag	rangian is given by		
	a)	T + V	b)	T – V
	c)	T/V	d)	V/T
17.	The	bending of waves around the edge	es of	obstacles is called
	a)	Interference	b)	Polarization
	c)	Refraction	d)	Diffraction

18.		ght beam spreads out when it tra wing can explain this phenomenon		through a narrow slit. Which of the
	a)	Polarization	b)	Reflection
	c)	Refraction	d)	Diffraction
19.	Plan	e of polarization and plane of vibra	tion a	are
	a)	Perpendicular to each other	b)	Parallel to each other
	c)	Straight	d)	None of the above
20.	Rub	y red is a crystal of		
	a)	Al ³⁺	b)	Cr ³⁺
	c)	AIO	d)	Al_2O_3
21.	Aco	ustic holography is used in		
	a)	Non-destructive testing	b)	Fiber optics
	c)	Optics	d)	None of the above
22.	Num	nerical aperture is given by		
	a)	n_1^2	b)	n_2^2
	c)	$n_1^2 - n_2^2$	d)	$(n_1^2 - n_2^2)^{1/2}$
23.	Opti	cal fibre acts as		
	a)	Wave guide	b)	Optical pulses
	c)	Sender	d)	Receiver
24.	Plas	tics are		
	a)	Crystals	b)	Amorphous solids
	c)	Metals	d)	Non-metals
25.	Ban	d gap energy of silicon is		
	a)	1.3 eV	b)	1.8 eV
	c)	1.1 eV	d)	2 eV

26	Magnetic	susceptibility	ie	aiven	hv
20.	Magnetic	Susceptibility	ıs	giveii	υy

a) I/H

b) H/I

c) HI

d) 1/HI

27. Mass defect is

- a) Difference between the total mass of nucleons and mass of the nucleus
- b) Sum of the masses of all nucleons
- c) Sum of the masses of nucleons and electrons
- d) Difference between mass of protons and mass of neutrons

28. If ΔM is the mass defect, the binding energy is

a) $\Delta M/c^2$

b) $\Delta M + c^2$

c) ΔMc^2

d) ΔM

29. A nuclear power station works on

- a) Controlled nuclear fission
- b) Uncontrolled nuclear fission
- c) Controlled nuclear fusion
- d) Uncontrolled nuclear fusion

a) $1.66 \times 10^{-27} \text{ kg}$

b) $2.66 \times 10^{-27} \text{ kg}$

c) $1.5 \times 10^{-27} \text{ kg}$

d) $1.2 \times 10^{-27} \text{ kg}$

31. A semiconductor diode is used as

a) Oscillator

b) Amplifier

c) Rectifier

d) Resistor

32. Zinc is an example of

a) Conductor

b) Insulator

c) Semi-conductor

d) Dielectric

33.	An	oscillator employs		
	a)	Positive feedback		
	b)	Negative feedback		
	c)	No feedback		
	d)	Both positive and negative feedba	ack	
34.	The	e open loop gain of an OPAMP is		
	a)	Infinity	b)	Zero
	c)	One	d)	Any of the above
35.	SCI	R is a solid state equivalent of		
	a)	Diode	b)	Triode
	c)	Pentode	d)	Thyratron
36.	Bist	table multivibrator is also called		
	a)	Sinusoidal oscillator	b)	Amplifier
	c)	Square wave oscillator	d)	Flip-flop
37.	808	86 is a		
	a)	16 bit microprocessor	b)	8 bit microprocessor
	c)	4 bit microprocessor	d)	64 bit microprocessor
38.	Pro	gram written in 8085 microprocess	or is	
	a)	Assembly language	b)	Low level language
	c)	High level language	d)	Machine language
39.		od of proper length l_0 moves with tion is	a ve	elocity 0.8 c. The length of the rod in
	a)	0.5 l ₀	b)	I_0
	c)	0.6 l ₀	d)	0.06 I ₀

40.	The	wavelength of matter wave is give	n by	
	a)	$\lambda = h$	b)	$\lambda = p$
	c)	$\lambda = h/p$	d)	$\lambda = p/h$
41.		h. If the period of the pendulum o		e the gravity is only 1/6 times of that of e earth is T, what is the period on the
	a)	Т	b)	T/2
	c)	√6 .T	d)	6 T
42.	The	moment of inertia does not depen	d on	
	a)	Mass	b)	Axis of rotation
	c)	Angular velocity	d)	Shape
43.	A ge	eostationary satellite revolves arou	nd th	e earth from
	a)	East to West	b)	West to East
	c)	North to South	d)	South to North
44.	Inte	rnal energy of an ideal gas depend	ls on	
	a)	Pressure	b)	Temperature
	c)	Volume	d)	Molecular size
45.	For	a harmonic oscillator the zero poin	t ene	ergy is
	a)	ħ ω	b)	1/2 ħ ω
	c)	0	d)	3/2 ħ ω
46.	The	surface temperature of a star is de	eterm	ined using
	a)	Planck's law	b)	Wien's law
	c)	Stefan's law	d)	Kirchoff's law

47.	The	Boolean expression $\overline{A} \overline{B} + \overline{A} + A B$	is e	quivalent to
	a)	Α	b)	\overline{A}
	c)	1	d)	0
48.		olid sphere rolls on a horizontal pla s total kinetic energy is	ine. 7	The ratio of its rotational kinetic energy
	a)	1:7	b)	2:7
	c)	3:7	d)	4:7
49.		carnot engine is working between maximum for the maximum value o		eratures $\mathcal{T}_{_{\! 1}}$ and $\mathcal{T}_{_{\! 2}}.$ The efficiency wil
	a)	$(T_1 + T_2)/T_1$	b)	$(T_1 - T_2)/T_1$
	c)	$(T_1 + T_2)/T_2$	d)	$(T_1 - T_2)/T_2$
50.	The	I-V characteristics of an ideal PN	diode	e is
	a)	Parabolic	b)	Exponential
	c)	Linear	d)	Zig-Zag
51.	The	mass of proton is ———— tin	mes t	that of an electron.
	a)	1000	b)	430
	c)	1837	d)	10000
52.	Fer	mions are particles with spin =		
	a)	1/2	b)	0
	c)	1	d)	3/2
53.	Elec	ctrons follow ———— statistic	s.	
	a)	Maxwell-Boltzmann	b)	Fermi-Dirac
	c)	Bose-Einstein	d)	None of the above

54.	The	integral form of Gauss's law is		
	a)	$ \oint B \cdot dS = \frac{q_{\text{enclosed}}}{\mathcal{E}_0} $	b)	$\nabla \cdot \mathbf{B} = \frac{\rho}{\varepsilon_0}$
		$\nabla \times \boldsymbol{B} = \frac{\rho}{\varepsilon_0}$		$\nabla \times E = \frac{\rho}{\varepsilon_0}$
55.	Rec	ciprocal lattice of bcc lattice is		
	a)	bcc itself	b)	fcc
	c)	hcp	d)	none of these
56.	The	electric field and potential are rela	ited b	y the equation
	a)	$E = \nabla^2 V$	b)	$E = - \nabla V$
	c)	$E = \nabla V$	d)	E = V
57.	The	order of magnitude of the energy	gap o	of a typical super conductor is
	a)	1 MeV	b)	1 KeV
	c)	1 eV	d)	1 meV
58.		Raman spectrum, the intensity of suppared to anti-Stokes lines.	Stoke	s lines will be normally ———————————————————————————————————
	a)	More	b)	Less
	c)	Equal	d)	Can be anything
59.	Car	nonical transformations are the trar	sform	nations of
	a)	Phase space	b)	Minkowski space
	c)	Hilbert space	d)	None of these
60.		sson and Lagrange brackets nsformation.	are	e ———— under Canonical
	a)	Convergent	b)	Divergent

d)

Variant

c)

Invariant

ANSWER SHEET — PART – A

ı.						i						-	_					
1	Α	В	С	D	Е	21	Α	В	С	D	Е		41	Α	В	С	D	Е
2	Α	В	С	D	Е	22	Α	В	С	D	Е		42	Α	В	С	D	Е
3	Α	В	С	D	Е	23	Α	В	С	D	Е		43	Α	В	С	D	Е
4	Α	В	С	D	Е	24	Α	В	С	D	Е		44	Α	В	С	D	Е
5	Α	В	С	D	Е	25	Α	В	С	D	Е		45	Α	В	С	D	Е
6	Α	В	С	D	Е	26	Α	В	С	D	Е		46	Α	В	С	D	Е
7	Α	В	С	D	Е	27	Α	В	С	D	Е		47	Α	В	С	D	Е
8	Α	В	С	D	Е	28	Α	В	С	D	Е		48	Α	В	С	D	Е
9	Α	В	С	D	Е	29	Α	В	С	D	Е		49	Α	В	С	D	Е
10	Α	В	С	D	Е	30	Α	В	С	D	Е		50	Α	В	С	D	Е
11	Α	В	С	D	Е	31	Α	В	С	D	Е		51	Α	В	С	D	Е
12	Α	В	С	D	Е	32	Α	В	С	D	Е		52	Α	В	С	D	Е
13	Α	В	С	D	Е	33	Α	В	С	D	Е		53	Α	В	С	D	Ε
14	Α	В	С	D	Е	34	Α	В	С	D	Е		54	Α	В	С	D	Е
15	Α	В	С	D	Е	35	Α	В	С	D	Ε		55	Α	В	С	D	Е
16	Α	В	С	D	Е	36	Α	В	С	D	Е		56	Α	В	С	D	Ε
17	Α	В	С	D	Е	37	Α	В	С	D	Е		57	Α	В	С	D	Е
18	Α	В	С	D	Е	38	Α	В	С	D	Е		58	Α	В	С	D	Е
19	Α	В	С	D	Е	39	Α	В	С	D	Е		59	Α	В	С	D	Е
20	Α	В	С	D	Е	40	Α	В	С	D	Е		60	Α	В	С	D	Е

PHYSICS

PART – B

(Descriptive Type)

Answer **any eight** questions.

 $(8 \times 5 = 40 \text{ Marks})$

- 1. Define moment of inertia. Give the formula, units and dimensions of moment of inertia.
- 2. State and explain Newton's law of cooling.
- 3. Derive an equation for electric potential due to a dipole.
- 4. Define first order phase transition and derive the Clausius-Clapperon equation.
- 5. Derive Poisson's and Laplace's equation.
- 6. Deduce Kepler's laws of planetary motion.
- 7. Derive expression for relativistic variation of length with velocity.
- 8. Derive time dependent Schrodinger equation from first principles.
- 9. Explain liquid drop model of nucleus and explain fission using this model.
- 10. With the help of a diagram, explain the working of a D-type flip-flop.
- 11. State Biot-Sawart law, and derive an expression for the magnetic field due to current passing through a long conductor.
- 12. Explain the principle of a hologram. Explain the processes involved in the construction of a hologram.

1	5	J – 2278
ı	•	J - ZZ10

1	

	17	J – 2278

	18	J -	- 2278
Ī			

19	J – 2278
	0 2210

20	J – 2278	

21	

١	22	•	J – 2278

•	23	J – 2278
		J - 2210