Code No.	J – 2287
----------	----------

Entrance Examination for Admission to the M.Tech. Degree Courses in the Teaching Departments, 2020

CSS

ELECTRONICS & COMMUNICATION (OPTOELECTRONICS & OPTICAL COMMUNICATION)

General Instruc	tions
-----------------	-------

- 1. The Question Paper is having two Parts Part 'A' Objective type (60%) & Part 'B' Descriptive type (40%).
- 2. Objective type questions which carry 1 mark each are to be (✓) 'tick marked' in the response sheets against the appropriate answers provided.
- 3. 8 questions are to be answered out of 12 questions carrying 5 marks each in Part 'B'.
- 4. **Negative marking**: 0.25 marks will be deducted for each wrong answer in Part 'A'.

Time: 2 Hours Max. Marks: 100

To be filled in by the Candidate								
Register	in Figures							
Number	in words							

PART - A

(Objective Type)

Choose appropriate answer from the options in the questions. **One** mark **each**.

 $(60 \times 1 = 60 \text{ marks})$

- 1. The circuit that provides the best stabilization of operating point is
 - a) Base resistor bias

b) Collector feedback bias

c) Potential divider bias

d) None of the above

DONOTWRITEHERE

2.	In a transistor,	the base current is about	of emitter current
----	------------------	---------------------------	--------------------

a) 25%

b) 20%

c) 35%

d) 5%

3. The ends of a load line drawn on a family of curves determine

- a) saturation and cutoff
- b) operating point
- c) power curve
- d) amplification factor

	a)	gate voltage	b)	source voltage
	c)	drain voltage	d)	gate current
5.	The	input impedance of a MOSFET is	of the	e order of
	a)	Ω	b)	a few hundred Ω
	c)	k Ω	d)	several M Ω
6.	For alwa		he P	eak Inverse Voltage of the rectifier is
	a)	Greater than the input voltage		
	b)	Smaller than the input voltage		
	c)	Equal to the input voltage		
	d)	Greater than the input voltage for wave rectifier	r full	wave rectifier and smaller for the half
7.		utput is measured between two co olifier with two input signal is said to		ors of transistor, then the differential configured as
	a)	Dual Input Balanced Output		
	b)	Dual Input Unbalanced Output		
	c)	Single Input Balanced Output		
	d)	None of the above		
8.		ain the collector voltage, for collect VCC = 10 V for single input unbala		sistors (RC) = 5.6 k Ω , IE = 1.664 mA doutput differential amplifier
	a)	0.987 V	b)	0.682 V
	c)	0.555 V	d)	None of the mentioned

3

J – 2287

4. The input control parameter of a JFET is

9.	Neg	ative feedback is employed in		
	a)	Oscillators	b)	Rectifiers
	c)	Amplifiers	d)	None of the above
10.	In C	olpitt's oscillator, feedback is obtai	ned	
	a)	By magnetic induction		
	b)	By a tickler coil		
	c)	From the centre of split capacitors	6	
	d)	None of the above		
11.	Сар	acitor discharge interval in monost	able	circuits is known as
	a)	Refresh time	b)	Recovery time
	c)	Dynamic time	d)	Static time
12.		CMOS monostable circuit elemen al from rising above supply voltage		ich is used to prevent input voltage
	a)	Capacitor	b)	Resistor
	c)	Inductor	d)	Diode
13.	Con	vert the binary equivalent 10101 to	its d	ecimal equivalent.
	a)	21	b)	12
	c)	22	d)	31
14.	Sim	plify $Y = ABC + A\overline{B}C + AB\overline{C}$		
	a)	ABC	b)	A(B+C)
	c)	B(A+C)	d)	A + BC

4

J – 2287

9.

15.		arnaugh map (K-map) is an abstra n matrix of squares.	m of ————	diagram organized						
	a)	Venn Diagram	b)	Cycle Diagram						
	c)	Block Diagram	d)	Triangular Diagra	m					
16.	At 1	100% modulation, the power in e	each	sideband is ——	——— of that of					
	a)	50%	b)	40%						
	c)	60%	d)	25%						
17.	Sup	erhetrodyne principle refers to								
	a)	Using a large number of amplifier	stag	es						
	b)	o) Using a push-pull circuit								
	c)	c) Obtaining lower fixed intermediate frequency								
	d)	None of the above								
18.	Delt	a modulation uses ———— b	its pe	er sample.						
	a)	One	b)	Two						
	c)	Four	d)	Eight						
19.	In P	CM encoding, quantization level va	aries	as a function of						
	a)	Frequency	b)	Amplitude						
	c)	Square of frequency	d)	Square of amplitu	de					
20.	Lem	npel-Ziv algorithm is								
	a)	Fixed to variable length algorithm								
	b)	Variable to fixed length algorithm								
	c)	Fixed to fixed length algorithm								
	d)	Variable to variable length algorithm								

J – 2287

21.		For a Gaussian channel of 1 MHz bandwidth with the signal power to noise spectra density ratio of about 10 ⁴ Hz, what would be the maximum information rate?								
	a)	12000 bits/sec	b)	28000 bits/sec						
	c)	14400 bits/sec	d)	32500 bits/sec						
22.		ch clock pulses are generated by ng and control operations related to		microprocessor so as to handle the rnal functioning level?						
	a)	single phase clock pulses	b)	multi-phase clock pulses						
	c)	anti-phase clock pulses	d)	none of the above						
23.	The	number of address and data lines	of 80	985 are						
	a)	8 and 8	b)	16 and 8						
	c)	8 and 16	d)	16 and 16						
24.	Inst	ruction Pointer (IP) contains offset	addre	ess of ———— segment.						
	a) Data segment			Code segment						
	c)	Stack segment	d)	Extra segment						
25.	Which ionization layer exists during day time and usually vanishes at night due to highest recombination rate?									
	a)	D-region	b)	Normal E-region						
	c)	Sporadic E-region	d)	Appleton region						
26.	At w	which angles does the front to back	ratio	specify an antenna gain?						
	a)	0° & 180°	b)	90° & 180°						
	c)	180° & 270°	d)	180° & 360°						
27.	Whi	ch conversion mechanism is perfo	rmed	by parabolic reflector antenna?						
	a)	Plane to spherical wave	b)	Spherical to plane wave						
	c)	Both (a) and (b)	d)	None of the above						
		6	6	J – 2287						

28. A ———— determines the target range by measuring the round a pulsed microwave signal.									
	a)	Pulse radar	b)	Doppler radar					
	c)	Cross section radar	d)	None of the mentioned					
29.	Wha	at is meant by TDMA?							
	a)	Time division modulation amplifie	er						
	b)	Time division multiple amplifier							
	c)	Time division multiple access							
	d)	None of these							
30.	Current amplification factor of a CB configuration is 0.88. Then the value of the base current when the emitter current is 1 mA will be								
	a)	0.12 mA	b)	0.1 mA					
	c)	1 mA	d)	10 mA					
31.	The spontaneous life time of an upper laser level emitting at 500 nm is 16 ns. The natural line width (FWHM) of the emission line is approximately.								
	a)	5 MHz	b)	10 MHz					
	c)	8 MHz	d)	4 MHz					
32.		e electric field in a certain region rge density will be	is Ē	$\hat{\vec{t}} = k r^2 \hat{r}$ in spherical coordinates. The					
	a)	$\in_{o} kr$	b)	$2 \in_{o} kr$					
	c)	$4 \in_{o} kr$	d)	$3 \in_{o} kr$					
33.		ertain JK flip flop has t_{pd} = 12 r structed from these flip flops and s		ne largest MOD counter that can be erate upto 10 MHz is					
	a)	any	b)	8					
	c)	256	d)	10					
			7	J – 2287					

34.	exe	cute an	equency of a	is 1.4	•				•	
	exe	cuting th	e instruction	IS						
	a)	1			b)	6				
	c)	7			d)	8				

35. A relativistic electron gains energy so that its mass becomes 2 $\,m_{\scriptscriptstyle o}$. Its speed is

a)
$$\frac{3}{4}c$$
 b) $\frac{\sqrt{3}}{2}c$ c) $\frac{1}{2}c$ d) $\sqrt{\frac{3}{2}}c$

36. Consider a system of 3 particles, which can occupy any of the 5 available energy states with equal probability

b) 5 K_B In 8 $5 K_B ln 3$ a) d) 3 K_B In 5 3 K_B In 8 c)

37. The internal energy E of system is $E=aS^2/NV$, where a is a constant. The temperature of the system is

a) c)

38. The average number of photons in equilibrium inside a radiation cavity of volume V at temperature T is proportional to

- T^2 Т b) a)
- c) T³ d)

39.		a Bose-Einstein Condensate (Beeneracy temperature is	ΞC),	the maximum value of fugacity at the					
	a)	0	b)	1					
	c)	1/2	d)	3/2					
40.	The	Lande g factor for the ³ D ₃ level is	;						
	a)		b)	$\frac{3}{2}$ $\frac{4}{3}$					
	c)	$\frac{3}{4}$	d)	$\frac{4}{3}$					
41.		500 W carrier is amplitude is mod dulated wave is (in W)	dulate	ed to a depth of 60%, the power in the					
	a)	650	b)	500					
	c)	1150	d)	590					
42.	The position of the first Stokes line in the rotational Raman spectrum of a diatomic molecule is at 12 cm ⁻¹ . The spacing between any two adjacent Stokes lines is								
	a)	4 cm ⁻¹	b)	6 cm ⁻¹					
	c)	10 cm ⁻¹	d)	8 cm ⁻¹					
43.		w much current will flow in a series \approx 80 Ω and R = 60 Ω ?	s RLC	C circuit, when V_T = 100 V , X_L = 160 Ω ,					
	a)	1 A	b)	1 mA					
	c)	6.28 A	d)	10 A					
44.		Iter that passes frequencies betwo		wo designated cut-off frequencies and					
	a)	High-pass filter	b)	Band elimination filter					
	c)	Band-pass filter	d)	Low-pass filter					
			9	J – 2287					

45.	The is	number of degrees of freedom fo	r a cir	cular disc rolling on a horizontal plane
	a)	2	b)	6
	c)	4	d)	1

46. The Laplace transform of a function f(t) is

a)
$$\int_{0}^{\infty} f(t) e^{-st}$$
 b)
$$\int_{-\infty}^{0} f(t) e^{-st}$$
 c)
$$\int_{0}^{\infty} f(t) e^{st}$$
 d)
$$\int_{-\infty}^{0} f(t) e^{st}$$

47. Conservation of energy is due to

a) Isotropy of spaceb) Homogeneity of spacec) Homogeneity of timed) None of the above

48. In Hamilton's principle expression L has the dimension of

a) Energyb) Actionc) Angular momentumd) None of the above

49. The voltage gain of a negative feedback amplifier without feedback is 200 and the feedback ratio is 0.02. Its feedback factor is

a) 10^4 b) 4 c) 10^{-4} d) 0.02

50. A particle and its antiparticle

- a) must have the same mass
- b) must be different from each other
- c) can always annihilate into two photons
- d) none of the above

- 51. The minimum kinetic energy of an electron confined within the nucleus of diameter 10⁻¹⁴ m is
 - a) 614.9 MeV

b) 6.149 MeV

c) 0.6149 MeV

- d) 61.49 MeV
- 52. The value of integral $\int_{-\infty}^{\infty} \frac{1}{x^2 + 1} dx$ is
 - a) $-\pi$

b) $+\pi$

c) 0

d) Indeterminate

- 53. The Curie law holds for
 - a) Diamagnetic substances
 - b) Paragmagnetic substances
 - c) Ferromagnetic substances
 - d) All of the above
- 54. If the applied DC voltage (V_0) across the Josephson junction is greater than critical voltage V_c , the average current through the junction is

a)
$$\langle I \rangle \neq 0$$

b)
$$\langle I \rangle = \langle I \rangle_{\text{max}}$$

c)
$$\langle I \rangle = 0$$

d)
$$\langle I \rangle = \infty$$

55. The velocity of an electron from (E-k) curve is

a)
$$v = \frac{1}{\hbar} \frac{dE}{dK}$$

b)
$$v = \hbar \frac{dE}{dK}$$

c)
$$v = \frac{1}{\hbar} \frac{d^2 E}{d k^2}$$

d)
$$v = \frac{\hbar}{\left(\frac{dE}{DK}\right)}$$

56. \hat{A} is an operator and ψ_1 and ψ_2 are two wave functions such that $\hat{A}\psi_1 = \psi_2$ and $\hat{A}\psi_2 = \psi_1$ then the eigen function of \hat{A}^2 is

a)
$$(\psi_1 + \psi_2)^2$$

b)
$$\psi_1^2 + \psi_2^2$$

c)
$$\psi_1 + \psi_2$$

d)
$$\psi_1^2 + \psi_2$$

57. In a pin photodiode if w is the width of i-Si layer and ϑ is the drift velocity, then the transit time is

a) w9

b) $\frac{w}{\vartheta}$

c) $\frac{9}{w}$

d) $\frac{0.1 \, 9}{w}$

58. The term Fill factor is often referred to

a) Photodiode

b) APD

c) Phototransistor

d) Solar cell

- 59. In a semiconductor laser photons are confined by
 - a) Polarization
 - b) Interference
 - c) Diffraction
 - d) Total internal reflection
- 60. A matrix representing rotation in the *x-y* plane is $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$. The eigen value is

a) $cos(\theta)$

b) $sin(\theta)$

c) $e^{\pm \theta}$

d) $e^{\pm i\theta}$

ANSWER SHEET — PART – A

1	Α	В	С	D	Е	21	Α	В	С	D	Е	41	Α	В	С	D	Е
2	Α	В	С	D	Е	22	Α	В	С	D	Е	42	Α	В	С	D	Е
3	Α	В	С	D	Е	23	Α	В	С	D	Е	43	Α	В	С	D	Е
4	Α	В	С	D	Е	24	Α	В	С	D	Е	44	Α	В	С	D	Е
5	Α	В	С	D	Е	25	Α	В	С	D	Е	45	Α	В	С	D	Е
6	Α	В	С	D	Е	26	Α	В	С	D	Е	46	Α	В	С	D	Е
7	Α	В	С	D	Е	27	Α	В	С	D	Е	47	Α	В	С	D	Е
8	Α	В	С	D	Е	28	Α	В	С	D	Е	48	Α	В	С	D	Е
9	Α	В	С	D	Е	29	Α	В	С	D	Е	49	Α	В	С	D	Е
10	Α	В	С	D	Е	30	Α	В	С	D	Е	50	Α	В	С	D	Е
11	Α	В	С	D	Е	31	Α	В	С	D	Е	51	Α	В	С	D	Ε
12	Α	В	С	D	Е	32	Α	В	С	D	Е	52	Α	В	С	D	Е
13	Α	В	С	D	Е	33	Α	В	С	D	Е	53	Α	В	С	D	Е
14	Α	В	С	D	Е	34	Α	В	С	D	Е	54	Α	В	С	D	Е
15	Α	В	С	D	Е	35	Α	В	С	D	Е	55	Α	В	С	D	Е
16	Α	В	С	D	Е	36	Α	В	С	D	Е	56	Α	В	С	D	Е
17	Α	В	С	D	Е	37	Α	В	С	D	Е	57	Α	В	С	D	Е
18	Α	В	С	D	Е	38	Α	В	С	D	Е	58	Α	В	С	D	Е
19	Α	В	С	D	Е	39	Α	В	С	D	Е	59	Α	В	С	D	Е
20	Α	В	С	D	Е	40	Α	В	С	D	Е	60	Α	В	С	D	Е

J – 2287

ELECTRONICS & COMMUNICATION (OPTOELECTRONICS & OPTICAL COMMUNICATION)

PART – B (Descriptive Type)

Answer any eight questions.

 $(8 \times 5 = 40 \text{ Marks})$

- 1. What is cross talk in communication? How can it be reduced?
- 2. Explain the master slave action of a JK flip flop.
- 3. Explain the basic principles of JFET, MESFET and MOSFET.
- 4. Explain automatic gain control.
- 5. Explain Young's double slit experiment and derive the expression for bandwidth.
- 6. Derive Hamilton's equation of motion.
- 7. Explain Cayley Hamilton theorem.
- 8. Derive Klein Gordon equations and what are its limitations.
- 9. Give a brief note on Type I and Type II superconductors.
- 10. Explain L-S and j-j coupling.
- 11. Deduce Maxwell's thermodynamic relations.
- 12. Discuss the meson theory of nuclear forces.

40	
16	J – 2287

	17	J – 2287

18	3	J – 2287

19	J	- 2287

Γ			
	20	1	– 2287
	20	J ·	- 2201

21 J-2287		
21 J-2287		
21 J-2287		
21 J−2287		
21 J-2287		
21 J-2287		
21 J-2287		
21 J - 2287		
21 J – 2287		
21 J – 2287		
21 J – 2287		
21 J – 2287		
21 J – 2287		
21 J - 2287		
21 J – 2287		
	21	J – 2287

22	J – 2287

1	23	J – 2287

25	J – 2287

26	J – 2287

J – 2287