Code No.	J – 2268
----------	----------

			on for <i>I</i>		sion to tments		G. Coui	rses in	the Te	aching
					CSS					
		ВОТА	NY/GE	NETIC	S AND	PLAN	BREE	DING		
				Gener	al Instru	ctions				
1.		Question Pape riptive type (40		ng two	Parts —	Part 'A	' Objecti	ve type	(60%) 8	Part 'B'
2.		ctive type ques						e (✓) 'tio	ck marke	ed' in the
3.	8 que	estions are to b	e answe	red out	of 12 que	estions c	arrying 5	marks	each in F	Part 'B'.
4.		ative marking irt 'A'.	i 0.2	5 mark	s will b	oe dedu	ucted fo	or each	wrong	answer
Time	: 2 H	lours						N	/lax. Maı	ks : 100
To b	e fille	ed in by the Car	ndidate							
Regi		in Figures								
Number in words										

PART – A

(Objective Type)

Choose appropriate answer from the options in the questions. **One** mark **each**.

 $(60 \times 1 = 60 \text{ marks})$

- 1. Which among the following is an example of intrallelic interaction?
 - a) Incomplete dominance
- b) Complementary gene interaction

c) Epistasis

d) Duplicate gene interaction

DONOTWRITEHERE

- 2. A haemophilic man marries a carrier female, what is the percentage of offsprings with haemophilia?
 - a) 100

b) 75

c) 50

- d) 25
- 3. Which among the following is required for DNA unwinding during replication?
 - a) DNA ligase

b) Primase

c) Helicase

d) Deformylase

4.	An	example of a derivative database										
	a)	GenBank	b)	PDB								
	c)	PROSITE	d)	NCBI								
5.	Ар	robe is										
	a)	Double stranded radiolabelled olig	gonu	cleotide strand								
	b)	Single stranded radiolabelled olig	onuc	leotide strand								
	c)	Single stranded non-labeled oligo	nucle	eotide								
	d)	Double stranded no-radiolabelled	oligo	onucleotide								
6.		e most probable number of game notype AaBBCc is	tes t	nat can be produced by a plant with								
	a)	2	b)	4								
	c)	6	d)	8								
7.	The	The correct sequence of reactions during PCR is										
	a)	Denaturation, renaturation, annea	aling	and polymerization								
	b)	Denaturation, annealing and poly	meriz	zation								
	c)	Polymerisation, denaturation and renaturation										
	d)	Denaturation, polymerization and depolymerisation										
8.	Pla	nt hormone responsible for stomata	al clo	sure								
	a)	Auxin	b)	Cytokinin								
	c)	Gibberellin	d)	Abscissic acid								
9.	Ар	lasmid is										
	a)	Double stranded DNA										
	b)	Self-replicating and extrachromos	oma	I DNA								
	c)	Circular DNA										
	d)	All of these										

10.	~ y	yiiiiospeiiii witti vesseis		
	a)	Gnetum	b)	Cycas
	c)	Pinus	d)	Both (b) and (c)
11.	The	word 'open' while describing a vas	scula	r bundle means
	a)	Without bundle sheath		
	b)	Open to secondary thickening		
	c)	Without cambium		
	d)	None of these		
12.		condition where filaments and ether is known as	anth	ers of all stamens of a flower fuse
	a)	Monadelphous	b)	Polyadelphous
	c)	Synandrous	d)	Syngenesious
13.	An e	example of a follicle type fruit is		
	a)	Pea	b)	Calotropis
	c)	Mustard	d)	Catheranthus
14.	An i	nflorescence that does not belongs	s to F	Racemose type
	a)	Spike	b)	Catkin
	c)	Corymb	d)	Dichasial cyme
15.	The	world's largest Botanic Garden – '	'The	Royal Botanic Garden" is situated in
	a)	USA	b)	England
	c)	Australia	d)	Japan
16.	Cur	<i>minum ciminum</i> belongs to the fami	ly	
	a)	Mimosaceae	b)	Apiaceae
	c)	Asteraceae	d)	Rubiaceae

4

J - 2268

17.	Wha	at is the morphology of the useful p	art of	f Cabbage
	a)	Endosperm	b)	Flower
	c)	Leaves	d)	Seed
18.	A he	elical virus		
	a)	Papilloma virus	b)	Vaccinia virus
	c)	Tobacco Mosaic virus	d)	Herpes virus
19.	Trar	nsduction was discovered by		
	a)	Frederic Griffith	b)	Jacob and Monod
	c)	Lederberg and Tatum	d)	Zinder and Lederberg
20.	A pa	arasitic alga		
	a)	Cephaleuros	b)	Chlorella
	c)	Tetraspora	d)	Vaucheria
21.	Whi	ch is not a method of asexual repro	oduct	ion in <i>Chlamydomonas</i> ?
	a)	Zoospores	b)	Aplanospores
	c)	Hypnospores	d)	Goniodia
22	Con	nponent of peptidoglycan in a bacte	arial d	coll wall
ZZ .				
	a)	Cellulose	b)	N-acetyl glucosamine
	c)	Pectin	d)	Starch
23.	'Gre	en mould' is		
	a)	Rhizopus	b)	Penicillium
	c)	Puccinia	d)	Yeast

24.	Citro	us canker is caused by		
	a)	Phytoplasma	b)	Xanthomonas
	c)	Pyricularia	d)	None of the above
25.	An e	example of a foliose lichen		
	a)	Graphis	b)	Usnea
	c)	Parmelia	d)	Cladonia
26.	A fu	gal group that reproduce solely by	asex	rual methods
	a)	Ascomycetes	b)	Zygomycetes
	c)	Basisdiomycetes	d)	Deuteromycetes
27.	The	most primitive type of life cycle in	algae	9
	a)	Haplontic	b)	Diplontic
	c)	Diplo-haplontic	d)	Haplo-biontic
28.	Sou	rce of Agar-agar is		
	a)	Sargassum	b)	Gracillaria
	c)	Gelidium	d)	Both (b) and (c)
29.	Che	emically cystolith is		
	a)	Calcium carbonate	b)	Calcium oxalate
	c)	Silica	d)	Starch
30.	The	plant pigment xanthophyll is		
50.	a)	Green coloured	b)	Yellow coloured
	a) c)	Purple coloured	d)	Red coloured
	U)	i dipie colodied	u)	rica coloulea

31.	Whi	ch of the following is not a polymer	of gl	ucose?
	a)	Cellulose	b)	Starch
	c)	Inulin	d)	Amylose
32.	Uns	tained living components of a cell of	an b	e visualized through
	a)	Dark field microscope	b)	Fluorescence microscope
	c)	Phase contrast microscope	d)	Electron microscope
33.	A gr	am positive bacterium		
	a)	E.coli	b)	Lactobacillus
	c)	Pseudomonas	d)	Klebsiella
34.	Тур	e of stomata where the subsidiary of	cells	are indistinguishable
	a)	Anamocytic	b)	Anisocytic
	c)	Diacytic	d)	Paracytic
35.	Num ovur		for	the formation of 100 mature egg or
	a)	25	b)	50
	c)	100	d)	400
36.	The	cell above the egg cell in the arche	egoni	um of bryophytes
	a)	Cover cell	b)	Neck canal cell
	c)	Ventral canal cell	d)	Neck cell
37.	A pt	eridophyte with haplostele		
	a)	Selaginella	b)	Psilotum
	c)	Marsilea	d)	Pteris
38.	Amp	phiphloic siphonostele is found in		
	a)	Marsilea	b)	Lycopodium
	c)	Selaginella	d)	Psilotum

39.	Peat	t moss is		
	a)	Sphagnum	b)	Riccia
	c)	Marchantia	d)	Funaria
40.	Histo	one present in the linker DNA is		
	a)	H2A	b)	H2B
	c)	H1	d)	H3
41.	An a	mino acid with only one codon is		
	a)	Phenyl alanine	b)	Tryptophan
	c)	Leucine	d)	Proline
42.	A typ	pical dihybrid test cross ratio will be	€	
	a)	1:1	b)	3:1
	c)	1:2:1	d)	1:1:1:1
43.	RNA	a polymerase binds to		
	a)	Promoter	b)	Operator
	c)	Repressor	d)	Activator
44.	Cros	ssing over takes place during proph	nase	I of meiosis at
	a)	Leptotene	b)	Zygotene
	c)	Pachytene	d)	Diplotene
45.	Barr	eye character in <i>Drosophila</i> result	s fron	n
	a)	Deletion	b)	Duplication
	c)	Translocation	d)	Inversion
46.	Аррі	roximate number of base pairs in Z	'-DN	A is
	a)	9	b)	10
	c)	11	d)	12

		the	sex of <i>Drosophila</i> according to genic
a)	Female	b)	Male
c)	Metamale	d)	Intersex
	•	A fo	ormed from a DNA of sequence
a)	5 'UUAACCGGAUA3'	b)	5 'TTAACCGGATA3'
c)	3 'UUAACCGGAUA5'	d)	3 'TTAACCGGATA5'
The	commercial product 'Chilgoza see	ds' a	re obtained from
a)	Pinus	b)	Gnetum
c)	Cycas	d)	Cupressus
		wate	er from root epidermis to endodermis
a)	Apoplastic pathway	b)	Symplastic pathway
c)	Transmembrane pathway	d)	All the above
The	microelement necessary for the e	voluti	on of oxygen during photosynthesis
a)	Manganese	b)	Copper
c)	Zinc	d)	Boron
Ant	bodies that function as enzymes		
a)	Apoenzymes	b)	Co enzymes
c)	Abzymes	d)	Synzymes
RUI	BISCO acts as an oxygenase enzy	me is	3
a)	Glyoxylate cycle	b)	Photorespiration
c)	Respiration	d)	Calvin cycle
	bala a) c) Wha 3'AA a) c) The a) c) The a) c) Anti a) c) RUI a)	balance theory a) Female c) Metamale What will be sequence of mRN 3'AATTGGCCTAT5' a) 5 'UUAACCGGAUA3' c) 3 'UUAACCGGAUA5' The commercial product 'Chilgoza see a) Pinus c) Cycas During water absorption, the flow of takes place by a) Apoplastic pathway c) Transmembrane pathway The microelement necessary for the eval Manganese c) Zinc Antibodies that function as enzymes a) Apoenzymes c) Abzymes RUBISCO acts as an oxygenase enzy a) Glyoxylate cycle	a) Female b) c) Metamale d) What will be sequence of mRNA for 3'AATTGGCCTAT5' a) 5 'UUAACCGGAUA3' b) c) 3 'UUAACCGGAUA5' d) The commercial product 'Chilgoza seeds' at a) Pinus b) c) Cycas d) During water absorption, the flow of water takes place by a) Apoplastic pathway b) c) Transmembrane pathway d) The microelement necessary for the evolution a) Manganese b) c) Zinc d) Antibodies that function as enzymes a) Apoenzymes b) c) Abzymes d) RUBISCO acts as an oxygenase enzyme is a) Glyoxylate cycle b)

54.	Whi	ch is not a search engine?		
	a)	Google	b)	Yahoo
	c)	Bing	d)	DOS
55.	Whi	ch of the following is not a measur	e of o	central tendency?
	a)	Mean	b)	Standard deviation
	c)	Median	d)	Mode
56.	The	study of individual organisms in re	elatio	n to their environment is
	a)	Autecology	b)	Synecology
	c)	Ethology	d)	Demography
57.	The	evolutionary history of an organis	m is o	called
	a)	Ontogeny	b)	Phylogeny
	c)	Eugenics	d)	Euthenics
58.	The	art of clipping shrubs into orname	ntal s	hapes
	a)	Arches	b)	Topiary
	c)	Pergola	d)	Trophy
59.	Sen	ninal method of propagation is by		
	a)	Seed	b)	Stem cuttings
	c)	Bulbs	d)	Rhizomes
60.	A bi	ological mutagen		
	a)	Bacteria	b)	Fungi
	c)	Mycoplasma	d)	Virus

ANSWER SHEET — PART – A

1	Α	В	С	D	Е	21	Α	В	С	D	Е	41	Α	В	С	D	Е
2	Α	В	С	D	Е	22	Α	В	С	D	Е	42	Α	В	С	D	Е
3	Α	В	С	D	Е	23	Α	В	С	D	Е	43	Α	В	С	D	Е
4	Α	В	С	D	Е	24	Α	В	С	D	Е	44	Α	В	С	D	Е
5	Α	В	С	D	Е	25	Α	В	С	D	Е	45	Α	В	С	D	Е
6	Α	В	С	D	Е	26	Α	В	С	D	Е	46	Α	В	С	D	Ε
7	Α	В	С	D	Е	27	Α	В	С	D	Е	47	Α	В	С	D	Е
8	Α	В	С	D	Е	28	Α	В	С	D	Е	48	Α	В	С	D	Е
9	Α	В	С	D	Е	29	Α	В	С	D	Е	49	Α	В	С	D	Е
10	Α	В	С	D	Е	30	Α	В	С	D	Е	50	Α	В	С	D	Е
11	Α	В	С	D	Е	31	Α	В	С	D	Е	51	Α	В	С	D	Ε
12	Α	В	С	D	Е	32	Α	В	С	D	Е	52	Α	В	С	D	Е
13	Α	В	С	D	Е	33	Α	В	С	D	Е	53	Α	В	С	D	Е
14	Α	В	С	D	Е	34	Α	В	С	D	Е	54	Α	В	С	D	Е
15	Α	В	С	D	Е	35	Α	В	С	D	Е	55	Α	В	С	D	Е
16	Α	В	С	D	Е	36	Α	В	С	D	Е	56	Α	В	С	D	Е
17	Α	В	С	D	Е	37	Α	В	С	D	Е	57	Α	В	С	D	Е
18	Α	В	С	D	Е	38	Α	В	С	D	Е	58	Α	В	С	D	Е
19	Α	В	С	D	Е	39	Α	В	С	D	Е	59	Α	В	С	D	Е
20	Α	В	С	D	Е	40	Α	В	С	D	Е	60	Α	В	С	D	Е

BOTANY/GENETICS AND PLANT BREEDING

PART – B

(Descriptive Type)

Answer **any eight** questions.

 $(8 \times 5 = 40 \text{ Marks})$

- 1. If the average molecular mass an aminoacid is 200 daltons, about how many nucleotide will be present in an mRNA coding sequence specifying a single polypeptide with a molecular mass of 30000 daltons?
- Describe in detail the ultrastructure of a bacterial cell.
- 3. Describe the floral morphology of Papilonaceae and write its economic importance.
- 4. Give a detailed account on the *lac* operon.
- 5. What is recombinant DNA technology? Explain various steps involved.
- 6. Give an account on methods of reproduction in algae.
- 7. Explain the economic importance of fungi.
- 8. You have visited a biodiversity rich area as part of your study tour. Prepare a report highlighting the lower forms of plants you have seen there.
- 9. Describe the process of carbon fixation by green plants.
- Suppose you are going to face severe water shortage in the coming summer season. As an environmentalist, highlight the causes and remedial measures for this issue.
- 11. Describe different types of steles in Pteridophytes.
- 12. Gregor Johann Mendel is considered as the father of Genetics. Put your arguments supporting the birth of Genetics through Mendel.

14	J – 2268

15	J – 2	268

16	J - 2268

'	•	17	J - 2268
		• •	J - 2200

	18	J – 2268
1		

20 J-2268		
20 J-2268		
20 J-2268		
20 J-2268		
20 J-2268		
20 J-2268		
20 J-2268		
20 J-2268		
20 J-2268		
20 J – 2268		
20 J – 2268		
20 J – 2268		
20 J - 2268		
20 J - 2268		
20 J – 2268		
20 J - 2268		
20 J - 2268		
20 J - 2268		
20 J – 2268		
	20	J - 2268

21	J – 2268

22	I _ 2268
	1 2260

I		
l	00	
	23	J - 2268