Code No.	J – 2270
Code No.	0 - 2210

	Entrance	e Exami			missio epartm			Course	s in the
	СН	IEMIST	RY						
			<u>Gener</u>	al Instru	<u>ctions</u>				
	The Question Paper is having two Parts — Part 'A' Objective type (60%) & Part 'B' Descriptive type (40%).					art 'B'			
•	ctive type ques		•	•			✓) 'tick	marked'	in the
3. 8 qu	estions are to b	e answe	ered out	of 12 qu	estions o	carrying	5 marks	each in	Part 'B'.
	ive marking : Part 'A'.	0.25	marks	s will be	e deduct	ted for	each w	rong ans	swer
Time : 2 H	lours						N	lax. Mar	ks : 100
To be fille	ed in by the Ca	ndidate							
Register	in Figures								
Number	in words								

PART – A

(Objective Type)

Choose appropriate answer from the options in the questions. **One** mark **each**.

 $(60 \times 1 = 60 \text{ marks})$

- 1. In the Schrodinger equation for a system, the symbol H stands for
 - a) Schrodinger constant

b) Hamiltonian operator

c) Energy

d) Eigen value

DONOTWRITEHERE

2.	The available atomic orbitals with the lowest energy levels are occupied before
	those with higher energy levels is called

a) Aufbau principle

b) Hund's rule

c) Pauli's principle

d) Heisenberg's principle

3. Which particle among the following will have the smallest de Broglie wavelength, measuring that they have the same velocity

a) a positron

b) a photon

c) an alpha particle

d) a neutron

4.	Wh	Which of the following is used as indelible ink?									
	a) aq.Cobalt nitrate solution b) aq. Silver nitrate solution c) aq. Ferric										
	nitra	ate solution d) aq. Copper nitrate so	olutio	า							
5.	Λm	ong the followings, which is both no	romo	agnatic and calcurad?							
5.	AIII	ong the followings, which is both pa	liailia	ignetic and coloured?							
	a)	K ₃ [Cu(CN) ₄]	b)	(NH ₄) ₂ TiCl ₆							
	c)	K ₂ CrO ₄	d)	VOCl ₂							
6.	In w	which of the following reaction H_2O_2	is a	cting as a reducing agent?							
	a)	$H_2O_2 +SO_2 \rightarrow H_2SO_4$	b)	HO ² ² +2KI \rightarrow 2KOH+ I ₂							
	c)	$4H_2O_2 +PbS \rightarrow PbSO_4 +H_2O$	d)	$HO_{2} \xrightarrow{2} + Ag_2 \rightarrow 2 Ag + H_2O + O_2$							
7.	Blea	aching action of CaOCl ₂ is due to									
	a)	nascent oxygen	b)	hydrogen chloride							
	c)	chlorine	d)	hydrogen oxychloride							
8.	The	e total number of possible isomers fo	or the	e complex compound [Cu(NH2)4 [PtCl4							
] is										
	a)	six	b)	five							
	c)	four	d)	three							
9.	Pyr	ometallurgy involves									
	a) roasting and calcination										
	b)	calcination and smelting									
	c)	roasting and smelting									
	d)	roaring, calcination and smelting									

10.	The	maximum covalency is generated	equal	to				
	a) the number of unpaired s electrons							
	b) the actual number of s and p electrons in the valence shell							
	c)	the number of unpaired p electron	าร					
	d)	the number of unpaired s and p e	lectro	ns				
11.	Amo	ong the followings, which is the bes	t for r	neasuring nanostructure?				
	a) S	TM b) SEM c) TEM d) AFM						
12.	The	reagent(s) for group VI of inorgani	c catio	on analysis is (are)				
	a)	aqueous solution disodium hydrog	gen pl	nosphate				
	b)	acidic solution disodium hydroger	phos	sphate				
	c)	acidic solution sodium hydrogen p	hosp	hate and hydrogen sulphide				
	d)	basic solution disodium hydrogen	phos	phate				
13.	The	lattice energy of a crystalline ionic	comp	ound is calculated using				
	a)	Alfred-Rochow scale	b)	Pauling's scale				
	c)	Born-Lande equation	d)	Mulliken scale				
14.	Hyd	rogen bomb is an example of nucle	ear					
	a)	fission	b)	fusion				
	c)	transformation	d)	transmutation				
15.	The	metal found in myoglobin is						
	a)	Iron	b)	Cobalt				
	c)	Nickel	d)	Copper				
16.		precipitation that occurs as a layer	upon	the already formed precipitate is				
	a)	post-precipitation	b)	co-precipitation				
	c)	layer-precipitation	d)	agglutination				
	,	• • •	4	J – 2270				

- 17. The indicator for complexometric titration is
 - a) l₂

b) EDTA

c) KMnO₄

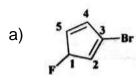
- d) K₂Cr₂O₇
- 18. The cathode in the Coolidge tube is made of
 - a) Copper

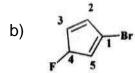
b) Barium

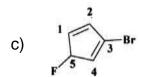
c) Platinum

- d) Tungsten
- 19. ———— is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed/partially closed mesh, with fused rings of five to seven atoms.
 - a) Fullerene

b) Graphite


c) Diamond


- d) Graphene
- 20. Glass transition temperature of a polymer can be measured using
 - a) TGA


b) XRD

c) DSC

- d) SEM
- 21. Which of the following numbering is correct?

- d) 4 3 2 B
- 22. An alkene on treatment with NaIO₄ , KMnO₄ and Na₂O₂ gives 2 moles of acetone. The alkene is
 - a) 2, 3-dimethyl but-2-ene
- b) 2-methyl but-2-ene

c) 3-methyl but-1-ene

d) 3, 3-dimethyle but-1-ene

23. What is the product of the following reaction?

a) H₃C CH₃

- p) H³C CH³
- C) CI CH,
- d) H₃C CH₃

24. Ethanol when treated with I2 and NaOH gives

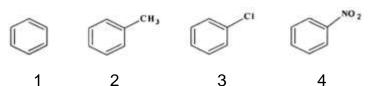
a) CH₃CH₂I

b) $CH_2 = CH_2$

c) CH₃ -O-CH₃

d) CHI₃

25. The enol form of acetone after treatment with D₂O gives


a) $CH_3-C(OD) = CH_2$

b) $CH_2D - C(OH) = CH_2$

c) CD₃-CO-CD₃

d) $CD_3 - C(OD) = CD_2$

26. Identify the correct order of reactivity in electrophilic substitution reactions of the following compounds :

6

a) 2 > 1 > 3 > 4

b) 2>3>1>4

c) 4 > 3 > 2 > 1

d) 1>2>3>4

J - 2270

27. The reaction CH₃Br + OH→CH₃OH+Br is

a) S_N1

b) S_N2

c) SE1

d) SE2

28. Toluene reacts with chlorine in the presence of sunlight to give

- a) para chlorotoluene
- b) benzoil chloride
- c) ortho chlorotoluene
- d) benzyl chloride

29. Choose the product of the following reaction

a) H₃C O CH₃

b) H₃C C

с) н₃с он

d) H₃c CH

30. Ethylbenzene on oxidation with potassium permanganate gives

a) benzaldehyde

b) benzoic acid

c) phenyl acetic acid

d) acetic acid and benzene

31. Choose the product of the reaction:

- 32. Which of the followings give Aldol condensation reaction?
- a) (CH) CCHO b) 33

CI₃CCHO

d)

- 33. Carboxylic acids on treatment with bromine and a catalytic amount of phosphorus leads to the selective α -bromination is known as
 - a) Cope reaction b) Perkin reaction c) Schmidt reaction d) HVZ reaction
- 34. The following reaction is known as

a) Hofmann reaction

b) Gabriel synthesis

c) Perkin reaction

- d) Schmidt reaction
- 35. The mixture of Rochelle salt and copper sulphate is called
 - a) Fehling's solution

b) Caro's reagent

c) Tollan's reagent

- d) Nessler's reagent
- 36. The following reaction is known as

- a) Oppenheimer oxidation
- b) Cannizzarro reaction

c) HVZ reaction

- d) Reamer Tiemann reaction
- 37. Conversion of an acid chloride to an aldehyde by the hydrogenolysis using Palladium and Barium sulphate catalysts is known as
 - a) MPV reduction b) Wolf-Kishner reduction
 - c) Rosenmund reduction d) Birch reduction

38.	The	chemical name of Vitamin C is							
	a)	cobalamin	b)	ascorbic acid					
	c)	calcitriol	d)	linoleic acid					
39.	Fura	n reacts with ammonia in presence	of a	lumina at 400°C to give					
	a)	pyrrole	b)	3-aminofuran					
	c)	pyridine	d)	2-aminofuran					
40.	In H	-NMR the OH peak of phenol and ——— ppm respectively.	etha	nol appears at ———— and					
	a)	5.5 and 4.5	b)	8.5 and 7.5					
	c)	8.5 and 4.5	d)	4.5 and 2.5					
41.	A ga	s is liquefied							
	a)	above critical temperature and be	elow	critical pressure					
	b)	below critical temperature and ab	ove	critical pressure					
	c)	below critical temperature and critical pressure							
	d)	d) above critical temperature and critical pressure							
42.	CsBr	has <i>bcc</i> structure with edge lengt in A is		4.30 A . The shortest interionic					
	dista	ince in between Cs ⁺ and Br ⁻	b) 37	7.2 d)					
	a) 3.	72 c) 7.44	74.4						
43.		t of a reaction does not depend or	1						
	a)	temperature of the reaction physical states of the reactants a	nd ni	raduate					
	b)	' '	•						
	c)	whether the reaction is carried ou		•					
	d)	the path by which final product is	บมเล	ineu					

- 44. The relationship between enthalpy change and internal energy change for a system is given by
 - a) $\Delta H = \Delta E + P \Delta V$

b) $\Delta H = \Delta E - P \Delta V$

c) $\Delta H = \Delta E + PV$

- d) $\Delta H = \Delta E + RT$
- 45. Choose the correct relation
 - a) $K_C = K \times (P_T)^{\Delta n}$

b) $K_P = K_C (P_T)^{\Delta n}$

c) $K_P = K \times (P_T)^{\Delta n}$

- d) $K_P = K \times (R_T)^{\Delta n}$
- 46. The temperature dependence of rate constant (k) of a chemical reaction is written in terms of Arrhenius equation $k = A \cdot e_{-E,PRT}$. Activation energy (E) of the reaction

can be calculated by plotting

a) k vs 1/log T

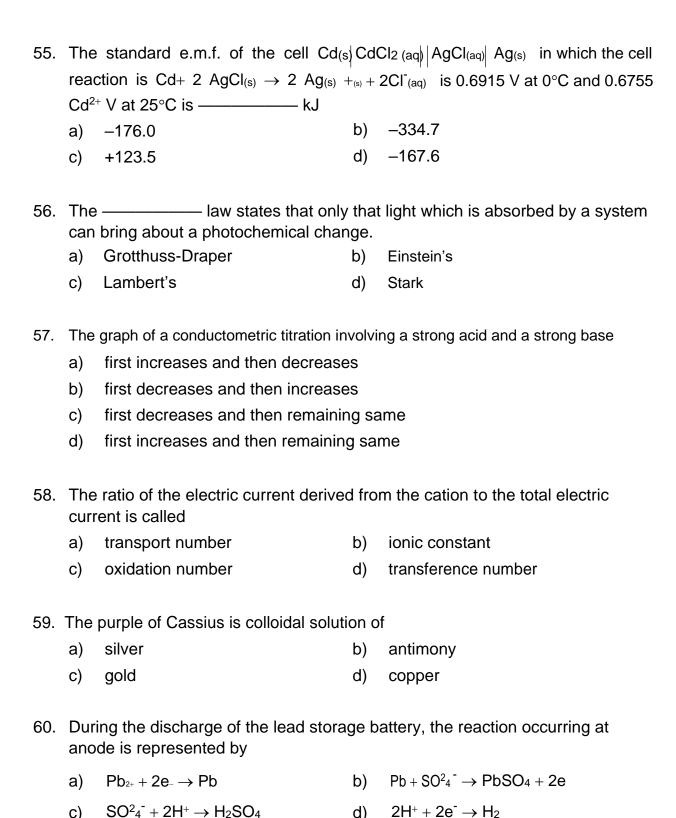
b) $\log k v \text{s} 1/T$

c) $\log k v \text{s} 1/\log T$

d) k vs T

- 47. Tyndall effect
 - a) absorption of light
 - b) presence of electrically charged particles
 - c) reflection of light
 - d) scattering of light
- 48. The pH of saturated solution of Zn(OH)₂ is 9.2 at 25°C. The value of solubility product of Zn(OH)₂ at this temperature is

10


a) 1.8×10^{-7}

b) 1.8×10^{-14}

c) $.8 \times 10^{-10}$

d) 1.8×10^{-5}

49.	For	the reaction system 2 $NO_{(g)} + O_{2(g)} =$	→ 2NC	$D_{2(g)}$, volume is suddenly reduced to half				
	its value by increasing the pressure on it. If the reaction is of first order with respect to							
	O ₂ and second order with respect to NO ₂ , the rate of reaction will							
	a)	diminish to one-fourth of its initial	l valu	ue				
	b)	diminish to one-eighth of its initia	l valu	ne				
	c)	increase to eight times of its initia	al val	ue				
	d)	increase to four times of its initial	valu	ie				
50.		transition without emission of rade to an unstable excited state that		n of a molecule from a stable excited ls to dissociation is termed as				
	a)	Pre-dissociation	b)	Post-dissociation				
	c)	Fluorescence	d)	Phosporescence				
51.	The -	Bravais lattices are gro	uped	into ———— lattice systems.				
	a)	fourteen, seven	b)	sixteen, eight				
	c)	fifteen, seven	d)	twelve, six				
52.		says that as absolute a for a chemical or physical transfor						
	a)	Gibbs theorem	b)	Nernst heat theorem				
	c)	The zeroth law	d)	Carnot theorem				
53	Fau	ivalent amounts of aqueous soluti	ons (of a week acid and a week base have				
00.		essociation constant 5×10^{-7} each						
	a)	8.3	b)	33.2				
	c)	66.4	d)	16.6				
54.	lf th	e half-cell reaction $A + a \rightarrow A$ has	دا د ع	rge negative reduction potential, it				
J 4 .		ws that	o a ia	inge negative reduction potential, it				
	a)	A is readily oxidized	b)	A is readily reduced				
	c)	A_ is readily oxidized	d)	A_ is readily reduced				
	<i>U)</i>	A- Is readily oxidized	,	·				
		1	•	J – 2270				

ANSWER SHEET — PART – A

1	Α	В	С	D	Е	21	Α	В	С	D	Ε	41	Α	В	С	D	Е
2	Α	В	С	D	Е	22	Α	В	С	D	Е	42	Α	В	С	D	Е
3	Α	В	С	D	Е	23	Α	В	С	D	Ε	43	Α	В	С	D	Е
4	Α	В	С	D	Е	24	Α	В	С	D	Е	44	Α	В	С	D	Е
5	Α	В	С	D	Е	25	Α	В	С	D	Е	45	Α	В	С	D	Е
6	Α	В	С	D	Е	26	Α	В	С	D	Е	46	Α	В	С	D	Е
7	Α	В	С	D	Е	27	Α	В	С	D	Е	47	Α	В	С	D	Е
8	Α	В	С	D	Е	28	Α	В	С	D	Е	48	Α	В	С	D	Е
9	Α	В	С	D	Е	29	Α	В	С	D	Е	49	Α	В	С	D	Е
10	Α	В	С	D	Е	30	Α	В	С	D	Е	50	Α	В	С	D	Е
11	Α	В	С	D	Е	31	Α	В	С	D	Е	51	Α	В	С	D	Е
12	Α	В	С	D	Е	32	Α	В	С	D	Е	52	Α	В	С	D	Е
13	Α	В	С	D	Е	33	Α	В	С	D	Е	53	Α	В	С	D	Е
14	Α	В	С	D	Е	34	Α	В	С	D	Е	54	Α	В	С	D	Е
15	Α	В	С	D	Е	35	Α	В	С	D	Е	55	Α	В	С	D	Е
16	Α	В	С	D	Е	36	Α	В	С	D	Е	56	Α	В	С	D	Е
17	Α	В	С	D	Е	37	Α	В	С	D	Е	57	Α	В	С	D	Е
18	Α	В	С	D	Е	38	Α	В	С	D	Е	58	Α	В	С	D	Е
19	Α	В	С	D	Е	39	Α	В	С	D	Е	59	Α	В	С	D	Е
20	Α	В	С	D	Е	40	Α	В	С	D	Е	60	Α	В	С	D	Е

13

J **–** 2270

CHEMISTRY

PART – B

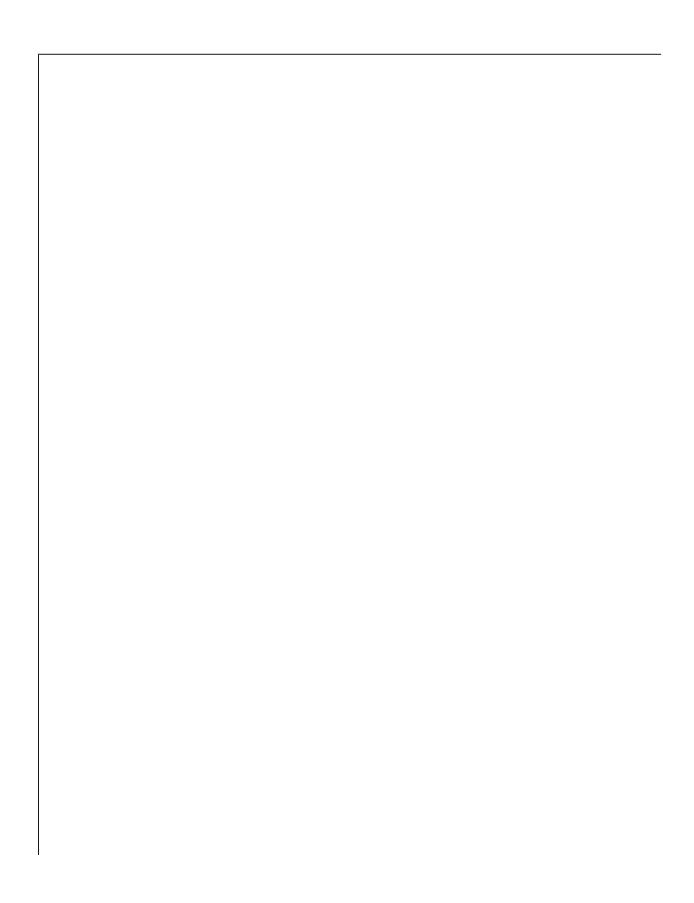
(Descriptive Type)

Discuss the major differences between Valance bond and Molecular Orbital

- theories.
- 2. Describe the manufacturing process and uses of glass.

Answer any eight questions.

1.


- 3. Discuss the various factors that affect the stability of a coordination compound.
- 4. Explain the various methods of synthesis of nanoparticles.
- 5. Distinguish between E1 and E2 mechanisms.
- 6. How do you convert an
 - (a) aldose to ketose and
 - (b) a ketose to aldose

Write down the reaction steps.

 $(8 \times 5 = 40 \text{ Marks})$

7.	What are the main reagents used for reduction? Give one examples each of
	the following reductions :
	(a) Rosenmund
	(b) Clemmenson
	(c) Wolf-Kishner.
8.	Draw the IR and proton NMR spectra of CH_3 - CO - O - CH_2 - CH_3 . Pick the main IR bands and NMR peaks (with peak splitting).
9.	Describe the various types of liquid crystals.
10.	(a) What is Stark-Einstein law?
	(b) What is the principle of NMR?
11.	(a) What is Michaelis – Menten law?(b) What is Debye-Falkenhagen effect?
12.	Differentiate between Freundlich and Langmuir isotherms.

J – 2270

