Code No. **J** – 2277

Entrance Examination for Admission to the P.G. Courses in the Teaching Departments, 2020 CSS MATHEMATICS/MATHEMATICS WITH FINANCE AND COMPUTATION **General Instructions** The Question Paper is having two Parts - Part 'A' Objective type (60%) & Part 'B' 1. Descriptive type (40%). 2. Objective type questions which carry 1 mark each are to be (\checkmark) 'tick marked' in the response sheets against the appropriate answers provided. 8 questions are to be answered out of 12 questions carrying 5 marks each in Part 'B'. 3. 4. Negative marking : 0.25 marks will be deducted for each wrong answer in Part 'A'. Time : 2 Hours Max. Marks: 100 To be filled in by the Candidate Register in Figures Number in words

PART – A

(Objective Type)

Choose appropriate answer from the options in the questions. **One** mark **each**.

 $(60 \times 1 = 60 \text{ marks})$

1. If
$$x^2 + 2xy = y^2$$
, then $\frac{dx}{dy}$ is

a)
$$\frac{x+y}{y-x}$$
 b) $2x+2y$

c) $\frac{x+1}{y}$ d) -x

DONOTWRITEHERE

- 2. If f(x)=g(u) and u=u(x), then the derivative is
 - a) f'(x)=g'(u) b) $f'(x)=g'(u) \cdot u'(x)$
 - c) f'(x)=u'(x) d) None of these

3. If f(x) and g(x) are differentiable functions such that f'(x)=3x and $g'(x)=2x^2$, then the limit $\lim \frac{[f(x)+g(x))-(f(1)+g(1))]}{(x-1)}$ as x approaches 1 is equal to

- a) 5 b) 0
- c) 20 d) None of these

- 4. Which of the following is the indefinite integral of $x^2 + 7$?
 - a) $\int (x^2 + 7) dx = 2x + c$ b) $\int (x^2 + 7) dx = x^3 + 7x$ c) $\int (x^2 + 7) dx = \frac{1}{2} x^3 + 7x$ d) $\int (x^2 + 7) dx = \frac{1}{3} x^3 + 7x + c$
- 5. The value of $I = \int e^x \cot(e^x) dx$ is
 - a) $\ln |\cos(e^x)| + C$ b) $\ln |\cos x| + C$
 - c) $\ln |\sin (e^x)| + C$ d) $\ln |\sin x| + C$
- 6. Which of the following expressions may be evaluated using the Fundamental Theorem of Calculus?
 - a) $\int (15x-3x^2-4) dx$ b) $\int (15x-3x^2-1) dx$
 - c) $\int (-11 e^{x} + e x e^{x} 1) dx$ d) None of these
- 7. The area of the region bounded by $y = x^2 5x + 4$ and x-axis is
 - a) $\frac{7}{2}$ b) $\frac{5}{2}$
 - c) $\frac{2}{9}$ d) $\frac{9}{2}$
- 8. The area of inside the cardioid $r=1+\cos\theta$ is
 - a) $\frac{3\pi}{2}$ b) $\frac{\pi}{2}$
 - c) $\frac{2\pi}{3}$ d) $\frac{\pi}{3}$

9. The value of center and vertices of the hyperbola

 $11x^2 - 25y^2 + 22x + 250y - 889 = 0$ is

- a) center : (1, -5), vertices : (1, -10), (1, 0)
- b) center : (-1, -5), vertices : (-1, 0), (-1, 10)
- c) center : (-1, 5), vertices : (-6, 5), (4, 5)
- d) center : (1, -5), vertices : (-4, -5), (6, -5)
- 10. The polar equation of the curve $x^2 + y^2 = 2ax$ is
 - a) $r = a\cos\theta$ b) $r = 2a\cos\theta$
 - c) $2r = a\cos\theta$ d) $r^2 = 2a\cos\theta$
- 11. If a sequence $\{a_n\}_{n=1}^{\infty}$ converges to a real number A, then $\{a_n\}_{n=1}^{\infty}$ is
 - a) unbounded sequence b) bounded sequence
 - c) both (a) and (b) d) none of these
- 12. If the plane cuts at an angle to the axis but does not cut all the generators, then what is the name of the conics form?
 - a) Ellipse b) Hyperbola
 - c) Circle d) Parabola
- 13. The value of $\int_{0}^{1} \log x \, dx$ is
 - a) 0 b) 1 c) -1 d) ∞
- 14. If $\sum x_n$ converges absolutely then
 - a) $\sum x_n^2$ converges
 - b) $\sum x_n^2$ diverges
 - c) $\sum x_n^2$ neither converges nor diverges
 - d) None of these

15. If f is an increasing real-valued functions of a real variable then

- a) f has atmost countable number of discontinuities
- b) f does not have discontinuities
- c) f has atmost countable number of continuities
- d) None of these
- 16. A differentiable real valued functions on R with bounded derivative is
 - a) continuous b) uniformly continuous
 - c) bounded d) not continuous
- 17. The power series $\sum a_n Z^n$ represents an entire function if and only if
 - a) liminf $|a_n|^{\frac{1}{n}}=0$
 - b) lim sup $\left| a_n \right|^{\frac{1}{n}} = 0$
 - c) liminf $|a_n|^{\frac{1}{n}}$ is a finite positive number
 - d) lim inf $|a_n| = 0$
- 18. Let z be a complex number. Then $|\operatorname{Re} z| + |\operatorname{Im} z|$ is

a)
$$\leq \sqrt{2} |z|$$
 b) $\leq |z|$

c)
$$>\sqrt{2}|z|$$
 d) $=\sqrt{2}|z|$

19. For what values of *z* does the series $\sum_{n=0}^{\infty} \left(\frac{z}{2+z}\right)^n$ converges

- a) Res(z) < -1 b) Res(z) > -1
- c) Res(z)=-1 d) Res(z)=-2

20. Let $f : \mathbb{C} \to \mathbb{C}$ be analytic such that f(z) is real for all $z \in \mathbb{C}$. Then

- a) $f(z)=0 \forall z$ b) f(0)=0
- c) $f(z)=e^z \forall z$ d) $f(z)=f(0) \forall z$

21. Let f = u + iv be analytic and non-constant. Then

- \bar{f} is analytic a) b) \bar{f} may or may not be analytic
- \bar{f} is never analytic $f + \bar{f}$ is analytic c) d)
- 22. The power series $\sum \frac{z^n}{n!}$ is
 - a) converges b) diverges
 - converges absolutely C) d) None of these
- 23. Let $f: \mathbb{C} \to \mathbb{C}$ be analytic and u = real part of f. Then
 - a) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ b) $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 0$ c) $\frac{\partial^2 u}{\partial x^2} + \frac{\partial u}{\partial x} = 0$ d) $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} = 0$
- 24. Let *H* be a subgroup of a group *G*. Then
 - H is cyclic a)
 - b) *H* is cyclic if *G* is abelian
 - H is cyclic if G is non-abelian C)
 - H is cyclic if G is cyclic d)
- 25. The value of the equation $x^4 2x^3 + 4x^2 + 6x 21 = 0$ is
 - b) $1 \pm i \sqrt{6}, \pm \sqrt{3}$ a) $2 \pm i\sqrt{6}, 3$ c) $\pm i\sqrt{6}$, 4
 - d) ±2, ±4
- 26. An infinite cyclic group has exactly
 - three generators a) b) one generator
 - C) two generators d) five generators

- 27. Let A be non zero a square matrix of order n with $n \ge 2$, then which of the following statement is false
 - a) If det (A) = 1 then rank (A) = 1
 - b) If det(A)=0 then rank (A) $\neq 0$
 - c) If det(A) \neq 0 then rank(A) = n
 - d) If rank (A)=1 then det(A)=0
- 28. A field having no proper subfield is
 - a) prime field b) division ring
 - c) integral domain d) none of these
- 29. The number of homomorphisms between the group z to z_{10} is

a)	1	b)	10
C)	5	d)	4

30. The units of the ring Z[i] are

a)	±2	b)	±1, ± <i>i</i>
c)	±1	d)	±i

- 31. Suppose that A is a square matrix such that $B^T A B$ is diagonal for some orthogonal matrix B. Then
 - a) A is necessarily symmetric b) A is skew symmetric
 - c) A is Hermition d) A is skew Hermition

32. Let *A* be 3×3 upper triangular matrix whose diagonal entries are 1, 2 and -3. Then A^{-1} is

- a) $\frac{7}{6}I \frac{1}{6}A^2$ b) $\frac{2}{3}I \frac{1}{3}A^2$
- c) $3I A^2$ d) $\frac{7}{2}A^2 I$

33. Expansion of the matrix $\begin{vmatrix} 1 & z & -y \\ -z & 1 & x \\ y & -x & 1 \end{vmatrix}$ gives a) 1 + x + y + zb) $1 + x^2 + y^2 + z^2$ c) 1 + xyzd) $x^2 + y^2 + z^2$

34. If G is a finite group, then the class equation is

a)
$$O(G) = \sum O(Z(G))$$

b) $O(G) = \sum \frac{O(G)}{O(Z)}$
c) $O(G) = \sum O(N(a))$
d) $O(G) = \sum \frac{O(G)}{O(N(a))}$

35. Let A be 3×2 matrix with Ax = 0 if and only if x = 0 then rank of A is

- a) 1 b) 3
- c) 2 d) data inadequate
- 36. A square matrix B is orthogonal if and only if
 - a) columns of B are mutually orthogonal unit vectors
 - b) columns of *B* are not mutually orthogonal identity vectors
 - c) columns of B are parallel to orthogonal unit vectors
 - d) none of these
- 37. Let *P* be any prime and $V = Z_p^2$, the standard two dimensional vector space over Z_p . Then the ordered bases of *V* is
 - a) $(P^2-1)(P^2+P)$ b) $(P^2-1)(P^2-P)$
 - c) $(P+1)(P^2-P)$ d) $(P-1)(P^2+P)$
- 38. The equation of the line through the origin and perpendicular to the plane x+y-z=2 is
 - a) $t\langle 1, 1, 1 \rangle$ b) $t\langle 1, 0, -1 \rangle$
 - c) $t\langle 1, 1, -1 \rangle$ d) $t\langle 1, 0, 1 \rangle$

- 39. What is the cross product $\vec{v} \times \vec{w}$ of the two vectors $\vec{v} = (0, 5, -2)$ and $\vec{w} = (3, 1, -2)$?
 - a) (-8, -6, 15) b) (8, -6, 15)
 - c) (8, 6, 15) d) (-8, -6, -15)

40. Differentiate the vector-valued function $r(t) = \langle \sin(t^2), 4t^2 - t \rangle$

a) $r'(t) = \langle t \cos(t^2), 8t-1 \rangle$ b) $r'(t) = \langle 2t \cos(t), 8t-1 \rangle$

c)
$$r'(t) = \langle t \cos(t^2), t-1 \rangle$$
 d) $r'(t) = \langle 2t \cos(t^2), 8t-1 \rangle$

41. The curve given by $\vec{r}(t) = t^2 \vec{i} + 2\sin t \vec{j} + 2\cos \vec{k}$, then the unit tangent vector is

a) $\frac{2t}{\sqrt{4t^2+4}}\vec{i} + \frac{2\cos t}{\sqrt{4t^2+4}}\vec{j} - \frac{2\sin t}{\sqrt{4t^2+4}}\vec{k}$

b)
$$\frac{2t}{\sqrt{4t^2+4}}\vec{i} - \frac{2\cos t}{\sqrt{4t^2+4}}\vec{j} + \frac{2\sin t}{\sqrt{4t^2+4}}\vec{k}$$

c)
$$\frac{2t}{\sqrt{4t^2+4}}\vec{i} + \frac{2\sin t}{\sqrt{4t^2+4}}\vec{j} - \frac{2\cos t}{\sqrt{4t^2+4}}\vec{k}$$

d)
$$\frac{2t}{\sqrt{4t^2+4}}\vec{i} - \frac{2\sin t}{\sqrt{4t^2+4}}\vec{j} + \frac{2\cos t}{\sqrt{4t^2+4}}\vec{k}$$

- 42. If the scalar product (dot product) of two unit vectors is zero, then they are
 - a) linearly dependent
 - b) forming an orthonormal basis
 - c) pointing in the same direction
 - d) at an angle of 180 degrees to each other
- 43. The dimension of the vector space of all real numbers *R* over the field of rational number is
 - a) 1 b) 3
 - c) finite d) None of the above

- 44. The partial differential equation of the family of surface z = (x + y) + A(xy) is
 - a) x p y q = 0 b) x p y q = x y
 - c) x p + x q = x + y d) x p + y q = 0

45. Classify the partial differential equation $u_{xx} + u_{yy} = u_{zz}$

- a) Parabolic b) Elliptic
- c) Hyperbolic d) None of these

46. The gradient vector of $f(x, y) = 2xy + x^2 + y$ at (0, -1) is

- a) $\langle 2, 1 \rangle$ b) $\langle 2, -1 \rangle$ c) $\langle 2, \pm 1 \rangle$ d) $\langle -2, 1 \rangle$
- 47. The double integral $\iint_R x y^2 dx dy$ over the region $R = \{(x, y) | 1 \le x \le 5, 0 \le y \le 2\}$ is
 - a) -64 b) -1 c) 1 d) 64

48. The integral of $\int_{-10}^{1} \int_{x-z}^{z+z} (x+y+z) \, dy \, dx \, dz$ is given by

- a) 0 b) 1
- c) 0.25 d) 4
- 49. The general solution of the equation y dx x dy = 0 is
 - a) $\frac{x}{y} = c$ b) x + y = c
 - c) xy=c d) x-y=c

- 50. In linear ordinary differential equation, the dependent variable and it differential coefficient are not multiple together and occurs only in
 - a) First degree b) Second degree
 - c) Third degree d) Fourth degree
- 51. Suppose y is a function of x which of the following is $d(x^3y)dx$
 - a) $3x^2y + x^3 dy dx$ b) $3x^2 y$
 - c) $3x^2 dy dx$ d) $3x^2 y + x^3$

52. The initial value problem $\frac{\partial u}{\partial t} + \frac{\partial u}{\partial x} = 0$, u = x on $x^2 + t^2 = 1$ has

- a) unique solution b) infinitely many solution
- c) two solution d) no solution
- 53. Consider the ODE y'' y = 0. Then
 - a) $y_1 = e^2 t$ and $y_2 = e^{-t^2}$ are the two solutions of the differential equation
 - b) The Wronskian is 5
 - c) The solution does not form a fundamental set
 - d) The solution form a fundamental set

54. Inverse Laplace transform of $\frac{1}{(s-1)(s+5)}$ is

a)
$$\frac{1}{6}e^{-t} - \frac{1}{36}e^{t} + \frac{1}{36}e^{-5t}$$
 b) $\frac{1}{6}e^{t}t - \frac{1}{36}e^{t} + \frac{1}{36}e^{-5t}$

c)
$$\frac{1}{6}e^{-t}t^2 - \frac{1}{36}e^{-t} + \frac{1}{36}e^{5t}$$
 d) $\frac{1}{6}e^{-t}t - \frac{1}{36}e^{-t} + \frac{1}{36}e^{5t}$

- 55. Laplace transform is very similar to the
 - a) differential transform b) fourier transform
 - c) integral transform d) exponential transform

11

- 56. Laplace transform of function f(t)=t where $t \ge 0$ is
 - a) s b) $\frac{1}{s}$
 - c) $\frac{1}{s^2}$ d) $\frac{1}{s^3}$
- 57. What will happen if in a *C* program you assign a value to an array element whose subscript exceeds the size of array?
 - a) The element will be set to 0
 - b) The computer would report an error
 - c) The program may crash if some important data gets overwritten
 - d) The array size would appropriately grow
- 58. What would be the equivalent pointer expression for referring the array element *a*[*i*] [*j*] [*k*] [*l*]?
 - a) ((((a + i) + j) + k) + l) b) (*(*(*(a + i) + j) + k) + l)
 - c) (((a+i)+j)+k+l) d) ((a+i)+j+k+l)
- 59. First operating system designed using C programming language
 - a) DOS b) Windows
 - c) UNIC d) Mac
- 60. During preprocessing, the code "#include<*stdio.h*>" get replaced by the contents of the file *stdio.h*
 - a) Yes
 - b) During linking the code "#include<stdio.h>" replaces by stdio.h
 - c) During execution the code "#include<stdio.h>" replaces by stdio.h
 - d) During editing the code "#include<stdio.h>" replaces by stdio.h

ANSWER SHEET — PART – A

1	А	В	С	D	Е
2	А	В	С	D	Е
3	А	В	С	D	Е
4	А	В	С	D	Е
5	А	В	С	D	Е
6	А	В	С	D	Е
7	А	В	С	D	Е
8	А	В	С	D	Е
9	А	В	С	D	Е
10	А	В	С	D	Е
11	А	В	С	D	Е
12	А	В	С	D	Е
13	А	В	С	D	Е
14	А	В	С	D	Е
15	А	В	С	D	Е
16	А	В	С	D	Е
17	А	В	С	D	Е
18	А	В	С	D	Е
19	А	В	С	D	Е
20	А	В	С	D	Е

21	А	В	С	D	Е
22	А	В	С	D	Е
23	А	В	С	D	Е
24	А	В	С	D	Е
25	А	В	С	D	Е
26	А	В	С	D	Е
27	А	В	С	D	Е
28	А	В	С	D	Е
29	А	В	С	D	Е
30	А	В	С	D	Е
31	А	В	С	D	Е
32	А	В	С	D	Е
33	А	В	С	D	Е
34	А	В	С	D	Е
35	А	В	С	D	Е
36	А	В	С	D	Е
37	А	В	С	D	Е
38	А	В	С	D	Е
39	А	В	С	D	Е
40	А	В	С	D	Е

41	А	В	С	D	Е
42	А	В	С	D	Е
43	А	В	С	D	Е
44	А	В	С	D	Е
45	А	В	С	D	Е
46	А	В	С	D	Е
47	А	В	С	D	Е
48	А	В	С	D	Е
49	А	В	С	D	Е
50	А	В	С	D	Е
51	А	В	С	D	Е
52	А	В	С	D	Е
53	А	В	С	D	Е
54	А	В	С	D	Е
55	А	В	С	D	Е
56	А	В	С	D	Е
57	А	В	С	D	Е
58	А	В	С	D	Е
59	А	В	С	D	Е
60	А	В	С	D	Е

MATHEMATICS/MATHEMATICS WITH FINANCE AND COMPUTATION

(Descriptive Type)

Answer any eight questions.

 $(8 \times 5 = 40 \text{ Marks})$

- 1. Calculate the derivative of the function $g(x) = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\sin^2 t + 2} dt$ at $x = \frac{\pi}{6}$.
- 2. Determine the area that lies inside $r = 3 + 2\sin\theta$ and outside r = 2.
- 3. Prove that *e* is irrational.

4. Given the function
$$f(x) = \begin{cases} \sin x & \text{if } x \le \frac{-\pi}{2} \\ a \sin x + b & \text{if } \frac{-\pi}{2} < x < \frac{\pi}{2} \\ 2 \cos x & \text{if } x \ge \frac{-\pi}{2} \end{cases}$$

Determine a and b so that the function f(x) is continuous for all values of x.

- 5. Show that the function $f(z) = \overline{z} = x i y$ is nowhere differentiable.
- 6. Prove that the set of all 2×2 real matrices forms a ring under the usual matrix addition and multiplication.

- 7. Find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$.
- 8. Find the directional derivative of $f(x, y) = \frac{x}{x^2 + y^2}$ in the direction of $\vec{v} = \langle 3, 5 \rangle$ at the point (1, 2).

9. Evaluate
$$\int_{0}^{1} \int_{0}^{3} \int_{0}^{5} (x+y+z) dx dy dz$$
.

10. Solve the differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \cos x$.

11. Find
$$L^{-1}\left\{\frac{1}{(s^2+a^2)^2}\right\}$$
.

12. What is meant by single dimensional array? Explain with C program.